Polygon Rendering

» Flat Rendering

1 Goraud Rendering
= Uses Phong Reflectance

' Phong Rendering

(Many slides adapted from Amitabh
Varshney).

Flat Rendering

One normal per triangle
Constant color per triangle

» Computed using reflectance model.
Best for flat surfaces to give a

faceted appearance

Advantages: simple and fast

Diffuse lllumination & Flat Rendering

: , Foley, van Dam, Feiner, Hughes

Gouraud Rendering

One normal per vertex
Compute color per vertex

Interpolate color per pixel (one add

per R, G, B channel)

Tolerable results for curved

surfaces

Diffuse & Gouraud Shading

am, Feiner, Hughes

Image courtesy, Foley, van Dam, Feiner, Hughes

Phong Rendering

One normal per vertex

Interpolate normal per pixel

> |nterpolate each component of normal

and then normalize
Compute color per pixel
Good for curved and shiny surfaces

Not available in OpenGL

How do we interpolate a surface normal? Keep in mind that
a normal is a unit vector. We can't just interpolate the x,y,z

components of the normal, because we wind up with a non-
unit normal. Here's a simple example:

N1 = (0, .436, -.9). N2 = (0, -.436,.9)

If we take the average of these, we get (0,0,.9), which is not
a unit normal. We have to normalize this to get (0,0,1).

Specular & Phong Rendering

Image courtesy, Foley, van Dam, Feiner, Hughes

Gouraud vs. Phong

» Gouraud is faster
= Interpolate 1 value instead of 3
» Don’t need to normalize
» Don’t need to render at each point.
* Phong much more accurate
» Especially when lighting effects change rapidly
with surface normal.
» True for shiny objects
= And for cast shadows.

Discussion

* Light Source and/or Viewer at infinity simplifies

calculations at the cost of realism

' Need to either clamp colors at max value or
normalize them preserving their relative weights
(R=RI(R+G+B),)

OpenGL Support for lllumination

' Ambient, Diffuse, Specular
illuminations are supported
1 Users have to define lights
= position, type, color
1 Users also define object material

» Front and/or back facing polygons, color

OpenGL Lights

GLfloat lightA_position[] ={1.0, 1.0, 1.0, 0.0};
GLfloat lightB_position[] ={1.0, 2.0, 3.0, 1.0},
(GL_LIGHTO, GL_POSITION,
lightA_position);
(GL_LIGHT1, GL_POSITION,
lightB_position);

The above defines a directional light source coming from the
direction (1, 1, 1), and a positional light source located at the

point (1, 2, 3) in the world coordinates.

OpenGL Lights

OpenGL specifies at least 8 light sources
GL_LIGHTO .. GL_LIGHT7

To get maximum lights in your implementations use:
(GL_MAX_LIGHTS, GLint

*num_lights);

You need to enable each light that you plan to use

and enable OpenGL lighting (they are all disabled by
default):

(GL_LIGHTO); (GL_LIGHT1); ...
(GL_LIGHTING);

{"}(GLenum light, GLenum pname, TYPE
param)

{iT}v(GLenum light, GLenum pname, TYPE
*param)

+ light can be GL_LIGHTO .. GL_LIGHT?

' pname can be one of following:
» GL_POSITION: light position
» GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR : light colors

» GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF: spotlight parameters

> GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION,
GL_QUADRATIC_ATTENUATION: parameters for attenuation

Spotlight

Cutoff

Direction

GLfloat light0_ambient[] ={0.0, 0.1, 0.0, 1.0};

GLfloat light0_diffuse[] ={0.0, 0.0, 1.0, 1.0};

GLfloat lightO_specular[] ={1.0, 1.0, 1.0, 1.0};

GLfloat lightO_position[] ={1.0, 2.0, 3.0, 1.0},
(GL_LIGHTO, GL_POSITION, light0_position);
(GL_LIGHTO, GL_AMBIENT, light0_ambient);
(GL_LIGHTO, GL_DIFFUSE, light0_diffuse);

(GL_LIGHTO, GL_SPECULAR,
lightO_specular);

(GL_LIGHTO);
(GL_LIGHTING);

Object Materials

Object colors under illumination are computed as a
component-wise multiplication of the light colors and
material colors

Just as light colors are specified differently for
ambient, diffuse, and specular illuminations, material
colors are also specified for each of these three
illuminations.

In addition to this emissive material color is also
defined:

= Lights don’t influence emissive material

= Emissive objects don’t add further light to environment

{I"T}(GLenum face, GLenum pname, TYPE
param)

{iT}v(GLenum face, GLenum pname, TYPE
*param)

face can be: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK

pname can be:

» GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION:
material colors

= GL_SHININESS: Specular (Phong) illumination exponent

GLfloat mat0O_ambient[] ={0.2, 0.2, 0.2, 1.0};
GLfloat matO_diffuse[] = {0.7, 0.0, 0.0, 1.0};
GLfloat matO_specular[] ={1.0, 1.0, 1.0, 1.0},
GLfloat matO_shininess[| = {5.0};
(GL_FRONT, GL_AMBIENT,
mat0_ambient);
(GL_FRONT, GL_DIFFUSE, mat0_diffuse);
(GL_FRONT, GL_SPECULAR,
matO_specular);

(GL_FRONT, GL_SHININESS,
mat0_shininess);

10

* |If only one material property is to be changed, it is
more efficient to use ()

() causes material to track
()
(GL_COLOR_MATERIAL);
(GL_FRONT, GL_DIFFUSE);

(0.2, 0.5, 0.8); // this changes the diffuse material
color

(GL_FRONT, GL_SPECULAR);

(0.9, 0.0, 0.2); // this changes the specular material
color

(GL_COLOR_MATERIAL);

OpenGL Shading

OpenGL supports flat and Gouraud shading.
No support for Phong shading yet.
(GL_FLAT)
» Flat shading
(GL_SMOOTH)

= Gouraud shading

Remember to supply normals with triangles or
vertices to get correct lighting and shading

11

Phong Shading with Specular
lllumination

Image courtesy, Foley, van Dam, Feiner, Hughes

Phong Shading + Specular
Illum. on Curved Surfaces

Image courtesy, Foley, van Dam, Feiner, Hughes

12

More and Better Lights

Image courtesy, Foley, van Dam, Feiner, Hughes

Image Textures

Image courtesy, Foley, van Dam, Feiner, Hughes

13

Displacement Textures +
Shadows

Image courtesy, Foley, van Dam, Feiner, Hughes

14

