Painter’s Algorithm

* Object-Order Algorithm
» Sort objects by depth

* Display them in back-to-front order

Painter’s Algorithm

Painter’s Algorithm

Sort polygons by farthest depth.

Check if polygon is in front of any other.
If no, render it.

If yes, has its order already changed
backward?

— If no, render it.

— If yes, break it apart.

Which polygon is in front?

Our strategy: apply a series of tests.
— First tests are cheapest
— Each test says polyl is behind poly2, or
maybe.
1. If min z of polyl > max z poly2, 1 in
back.

2. The plane of the polygon
with smaller z is closer to
viewer than other polygon.

(a,b,c,)*(xy,z) >=d.

X 3.The plane of polygon

with larger z is completely
behind other polygon.

4. Check whether they overlap in image
a. Use axial rectangle test.

b. Use complete test.
y

X X
Non-Overlapping x ory Overlapping projection

B

B is on one side of A
A

Problem Cases: Cyclic and
Intersecting Objects

Painter’s Algorithm

» Solution: split polygons

» Advantages of Painter’s Algorithm
— Simple
— Easy transparency

» Disadvantages
— Have to sort first

— Need to split polygons to solve cyclic and intersecting
objects

Spatial Data-Structures for
Visibility
Octrees (generalization of Binary trees in 1D

and Quad trees in 2D)

Binary-Space Partition Trees (BSP trees) (an
alternative generalization of Binary trees in 1D)

Subdividing architectural buildings into cells
(rooms) and portals (doors/windows)

Portals

Similar to view-frustum culling
View-independent

Preprocess and save a list of possible visible
surfaces for each portal

in 1149 1181 ‘I
A=
LAT

1146 1152

U
1120 112
I'Y1

Cells and Portals

I mages courtesy: Dave L uebke, UVa

Cells and Portals

I mages courtesy: Dave L uebke, UVa

Cells & Portals

Images courtesy: Dave L uebke, UVa

Cells & Portals

Cells & Portals

Images courtesy: Dave L uebke, UVa

BSP Trees

e |dea

Preprocess the relative depth information of the scene in a
tree for later display

» Observation
The polygons can be painted correctly if for each polygon F
— Polygons on the other side of F from the viewer are
painted before F
— Polygons on the same side of F as the viewer are painte
after F

Building a BSP Tree

Typedef struct {

polygon root;

BSP_tree *backChild, *frontChild;
} BSP_tree;

BSP_tree *makeBSP(polygon *list)
{
if(list = NULL) return NULL;

Choose polygon F from list;
Split all polygons in list according to F;

BSP_tree* node = new BSP_tree;

node->root = F;

node->backChild = makeBSP(polygons on front side of F);
node->frontChild = makeBSP(polygons on back side of F);
return node;

Building a BSP Tree (2D)

Building a BSP Tree (2D)

Building a BSP Tree (2D)

10

Displaying a BSP Tree

void displayBSP (BSP_tree *T)
{
if (T!=NULL){
if (viewer is in front of T->root) { // display backChild first
displayBSP (T->backcChild);
displayPolygon (T->root);
displayBSP (T->frontChild);
}
else { // display frontChild first
displayBSP (T->frontChild);
displayPolygon (T->root);
displayBSP (T->backcChild);

Display order: 4, 5b, 3, 5a, 2, 1 (only 3 is front
facing)

11

BSP Trees: Analysis

» Advantages
— Efficient
— View-independent
— Easy transparency and antialiasing

» Disadvantages
— Tree is hard to balance
— Not efficient for small polygons

12

