
1

Painter’s Algorithm

• Object-Order Algorithm

• Sort objects by depth

• Display them in back-to-front order

Painter’s Algorithm

First

Second

Third

Fourth

2

Painter’s Algorithm

• Sort polygons by farthest depth.
• Check if polygon is in front of any other.
• If no, render it.
• If yes, has its order already changed

backward?
– If no, render it.
– If yes, break it apart.

Which polygon is in front?

Our strategy: apply a series of tests.
– First tests are cheapest
– Each test says poly1 is behind poly2, or

maybe.

1. If min z of poly1 > max z poly2, 1 in
back.

3

z

B

A

z

B

A

2. The plane of the polygon
with smaller z is closer to
viewer than other polygon.

(a,b,c,)*(x,y,z) >= d.

x

x

3. The plane of polygon
with larger z is completely
behind other polygon.

y

x

y

x
Non-Overlapping x or y Overlapping projection

B is on one side of A

x

z

B

A

4. Check whether they overlap in image

a. Use axial rectangle test.

b. Use complete test.

4

Problem Cases: Cyclic and
Intersecting Objects

Painter’s Algorithm

• Solution: split polygons

• Advantages of Painter’s Algorithm
– Simple

– Easy transparency

• Disadvantages
– Have to sort first

– Need to split polygons to solve cyclic and intersecting
objects

5

Spatial Data-Structures for
Visibility

• Octrees (generalization of Binary trees in 1D
and Quad trees in 2D)

• Binary-Space Partition Trees (BSP trees) (an
alternative generalization of Binary trees in 1D)

• Subdividing architectural buildings into cells
(rooms) and portals (doors/windows)

Portals
• Similar to view-frustum culling

• View-independent

• Preprocess and save a list of possible visible
surfaces for each portal

6

Cells and Portals

A

D

H

FCB

E

G

H

B C D F G

EA

Images courtesy: Dave Luebke, UVa

Cells and Portals

A

D

H

FCB

E

G

H

B C D F G

EA

Images courtesy: Dave Luebke, UVa

7

Cells & Portals

A

D

H

FCB

E

G

H

B C D F G

EA

Images courtesy: Dave Luebke, UVa

Cells & Portals

A

D

H

FCB

E

G

H

B C D F G

EA

Images courtesy: Dave Luebke, UVa

8

Cells & Portals

A

D

H

FCB

E

G

H

B C D F G

EA

Images courtesy: Dave Luebke, UVa

BSP Trees

• Idea

Preprocess the relative depth information of the scene in a
tree for later display

• Observation
The polygons can be painted correctly if for each polygon F:

– Polygons on the other side of F from the viewer are
painted before F

– Polygons on the same side of F as the viewer are painted
after F

9

Building a BSP Tree
Typedef struct {

polygon root;
BSP_tree *backChild, *frontChild;

} BSP_tree;

BSP_tree *makeBSP(polygon *list)
{

if(list = NULL) return NULL;

Choose polygon F from list;
Split all polygons in list according to F;

BSP_tree* node = new BSP_tree;
node->root = F;
node->backChild = makeBSP(polygons on front side of F);
node->frontChild = makeBSP(polygons on back side of F);
return node;

}

Building a BSP Tree (2D)

2

1
3

5a
5

5b

4

3

1

2

5a

4

5b

10

Building a BSP Tree (2D)

2

1
3

5a
5

5b

4

3

4

5b
15a

2

front back

front back

Building a BSP Tree (2D)

2

1
3

5a
5

5b

4

3

15a

2

front back

front back
4

5b

back

11

Displaying a BSP Tree

void displayBSP (BSP_tree *T)
{

if (T != NULL) {

if (viewer is in front of T->root) { // display backChild first

displayBSP (T->backChild);

displayPolygon (T->root);

displayBSP (T->frontChild);

}

else { // display frontChild first

displayBSP (T->frontChild);

displayPolygon (T->root);

displayBSP (T->backChild);

}
}

Displaying a BSP Tree

Display order: 4, 5b, 3, 5a, 2, 1 (only 3 is front
facing)

2

1
3

5a
5

5b

4

3

15a

2

front back

front back
4

5b

back

12

2

1
3

5a
5

5b

4

3

15a

2

front back

front back
4

5b

back

BSP Trees: Analysis

• Advantages
– Efficient

– View-independent

– Easy transparency and antialiasing

• Disadvantages
– Tree is hard to balance

– Not efficient for small polygons

