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CNNSs so far

* Handwritten digit classification, 1995ish

 State-of-the-art recognition accuracy for handwritten digits [0-9], used in
automatic check deposit and postal applications

* Plain CNN structure with 3 stages of CNN + 2 fully connected
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Courtesy — Yann Lecun et al.



CNNs so far

* ImageNet challenge, 2012

» State-of-the-art accuracy on 1K object categories near 95%
* AlexNet —5 layers of CNN + 3 fully-connected layers
* VGG - 16 layer network with decomposed filters
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CNNSs so far

* Deep face 2014

* Close to human accuracy on face verification (same or different)
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What is really important ?

* The convolutional layers are the most important part

* A pre-trained network for ImageNet classification can be used for
many different vision tasks.

* Detection R-CNN: Regions with CNN features
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What next ?

* Segmentation

* Depth Image

* Image Quality Estimation

* Stereo ?

* 3-D reconstruction ?

* Imagine and grab the glory



Semantic segmentation

Image Per-pixel Label



Can CNN be used ?

* Yes
 The state-of-the-art is indeed a CNN based model.

* How ?
* Use CNN and extract per-pixel features.
* Treat each output localtion (i,j) in a CNN cube as a feature for a patch.
* Match correspondence of output CNN locations to pixels.
* Use pixel-features to classify each pixel.

* But really how ??



Understanding CNN cubes
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Multi-scale CNN for better accuracy
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Pre-training is still better

* Using VGG pre-trained model and simply up-sampling per-pixel
classification gives better accuracy than all previous models.



Discussion and informal thoughts

* CNN is actually a very powerful feature learning paradigm and has the
potential to be used almost everywhere owing to its trainability and
cross-application generalization.

* Think of it as extracting features from a patch and then doing
something useful depending on the application.



