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We have covered a lot of material in this course.  One way to organize this material 
is around a set of key equations and algorithms.  You should be familiar with all of 
these, and able to apply them to problems. I do not want you to memorize these 
equations, but to understand them and be able to use them.  I am also listing some 
sample problems.  It’s a bit hard to come up with lots of good questions, so some of 
these may be easier or harder than questions I would ask on the final.  Also, I came 
up with a lot of questions quickly, so if one of these questions seems ill-considered, 
it probably is, and you shouldn’t worry too much about it. 
 
This document is intended to give your studying for the final some focus.  However, I 
do not promise that every question on the final will relate to something that is 
mentioned in this review. 
 

1. Convolution and Fourier Transforms 
You should be familiar with the Fourier series, and understand that any function can 
be expressed as an infinite sum of harmonic terms: 
 

 
You should also understand the Fourier transform, and understand that the 
coefficients of a Fourier transform or series can be obtained by taking an inner 
product, eg.: 
 

 
 
You should also understand the meaning of convolution, and be able to determine 
the effects of convolution.  In 1D this is: 
 

 
And you should understand the meaning and significance of the convolution 
theorem.     
 



You should be able to answer  questions such as: 
 

a. What is the result of convolving a 1D image: [1, 2, 1, 3, 4, 5, 1] with a 
filter: [-1 2 -1]. 

b. What is the result of convolving cos(2t) with cos(4t)? 
c. Compute the first three terms of the Fourier series representation of 

the function f, where f(x) = 1 for -1<x<1, f(x) = 0 otherwise. 
 

2. Linear and non-linear diffusion.  You should understand the 2D and 1D 
diffusion equations, such as, in 2D: 

 
along with the equations for flux and conservation: 
 

   
You should also understand how isotropic, linear diffusion can be solved using 
convolution, and understand diffusion as a Markov process.  You should understand 
the idea of nonlinear diffusion, and how different choices of D give you anisotropic 
and/or nonlinear diffusion.  Some sample problems might include: 
 

a. Suppose we have an image in which the intensity is described by I(x,y) 
=  7 + x + xy.  If D = [1;0;0;1] what is the flux at (7,3)?  What is the 
change in intensity with respect to time at (7,3)? 

b. Given that in Perona-Malik diffusion, D is defined using: 

 
  if lambda = 1, what is the Perona-Malik diffusion at location (x,y)? 
 

3. Edge Detection.  Understand Canny edge detection as an algorithm with the 
following steps; 1) Smooth the image; 2) Compute the gradient; 3) Find local 
gradient extrema that are a) above some threshold; and b) bigger than their 
neighbors in the gradient direction. 

  



 
a. Suppose we have smoothed an image, and a 3x3 region in the image 

has intensities of: 
3 5 12 13 14 
4 6 13 14 15 
5 7 14x 15 16 
6 8 15 16 17 
7 9 16 17 18 

How would you decide whether the pixel in the middle, marked by an 
‘x’, is an edge?   
 

4. Markov Processes, Markov Random Fields.  You should understand what 
makes something Markov, what makes something a Markov Random Field, 
the relationship between an MRF and a Gibbs distribution, how to determine 
the steady state of a Markov process, and how MRFs can be solved using 
graph cuts.  You should recognize the equations: 

 

 
 

Some sample problems: 
a. Suppose Aaron and Betty play the following game.  Each starts with 

$50.  At every turn, they flip a biased coin, that is heads with 
probability .6.  If the coin is heads, Aaron gives Betty a dollar.  If it is 
tails, Betty gives Aaron a dollar.  If either player ever goes bankrupt, 
the other player gives them $20.  If the game is played for a long time, 
what is the expected amount of money that Betty will have?  (This 
might be hard to do with pencil and paper, so just figure out how 
you’d solve it using Matlab, ideally using eigenvectors). 

b. Suppose every pixel of an image is to be labeled boat, sky, or water.  
Every pixel has a 90% chance of having the same label as its 
immediate neighbor, and a 5% chance of having each different label.  
If a pixel is blue, it has a 50% chance of being water and a 50% chance 
of being sky.  If it is not blue, it has a uniform chance of having any 
label.  Explain how you would create an MRF to model this problem. 

5. Normalized Cut and bilateral filtering.  You should remember what bilateral 
filtering is, and understand the equations:  

 

 



 
 
 For normalized cut, you should know what a graph cut is, and understand the 
normalized cut cost function: 
 

 
 You don’t need to remember the entire derivation, but you should 
understand that a relaxed version of normalized cut is solved by solving: 
 

 
 and remember the steps of the normalized cut algorithm needed to formulate 
and solve this problem.  Some sample problems might be: 

a. Compare the results of bilateral filtering and Perona-Malik diffusion on a 
step edge. 

b. Suppose we have an image containing a white disk on a black 
background.  Using normalized cut, as described by Shi and Malik, what 
are the possible results we can get?  How do they depend on the size of 
the disk, the size of the image, and the parameters of normalized cut? 
 

6. E-M and K-means.  You should know the steps of both algorithms.  You 
should understand that K-means is minimizing: 



 
 You should understand what a Gaussian mixture model is, as described by: 
 

 
 and you should understand the E 

 
 and M steps: 

 
a. Give an example of three points for which K-means will converge to 

different answers, depending on how it is initialized. 
b. Give an example in which K-means will converge to a local minima 

that is not a global minima, but for which E-M will only converge to 
the global minimum. 

 
7. Background subtraction and Texture.  We talked about how background 

subtraction and texture analysis can be done by modeling these as statistical 
processes.  You should understand how a Gaussian mixture model could be 
used for background subtraction, and how texture can be modeled using 
textons (and what the relationship is between textons and bag-of-words 
models) and as a Markov process.  (Questions on these topics are likely to be 
really questions about statistical modeling.) 

Next, in the M step we recompute the parameters of all these distributions, using these 

soft assignments. 

 
 

 

We can also prove that this converges to a locally optimal solution by showing that each 

step increases the probability of the points given the distributions.   

 

E-M also can get stuck in local optima easily.  However, it does seem to get stuck less 

than K-means.  This is illustrated in a simple example with 1D points at 0 20 32, and 

beginning with centers at 10 and 32.  This would be a local minima for k-means.  But 

with E-M, the point at 20 is almost evenly shared between the two centers, at first.   So 

the center at 32 gets smaller, and as it moves closer to 20 it takes over more of it.  As the 

first center loses 20, it shifts to the left. 

 

2.3 Extensions and Variations 

 

This can be applied to many other problems.  We can cluster colors or textures, by 

treating them as points in a three or high dimensional space.  We can also add in position 

as a feature, and form clusters localized in position and texture/color.  We can also use 

this to find lines, fitting a line to the points, and allowing for Gaussian noise in the 

normal direction. 

 

3. Kernel Density Estimation 

 

A basic tool for estimating a probability distribution from discrete samples is Kernel 

Density Estimation (KDE).  The idea is that for every sample, you act as if you have 

sensed a continuous kernel, centered at that point.  We’ll only consider Gaussian kernels, 

which means that our distribution is a sum of identical Gaussians, centered at all the 

sample points: 

 



 
8. SIFT descriptors.  Know what a SIFT descriptor is and how it works. 

 
a. How would the SIFT descriptor for a region of an image change if the 

lighting got brighter so that every pixel became twice as bright? 
 
 

9. Perspective projection and projective transformations.  You should 
understand how perspective projection works.  You should know what the 
horizon is and what a vanishing point is.   You should know how to represent 
the relationship between two images using projective transformations, and 
what homogenous coordinates are.  

 

 
a. Suppose we have a camera with a focal point at the origin and an 

image plane of z = 1.  Give an example of parallel lines in the world 
that have a vanishing point at (3,2,1) in the image plane. 

b. Suppose we have four 2D points.  Under what circumstances does 
there exist a projective transformation that will map these to the 
locations (0,0), (1,0), (0,1), (1,1)? 

c. Prove that a circle in the world will always project to an ellipse in the 
image. 

10. Stereo matching.  You should be familiar with using correlation, dynamic 
programming, or graph cuts (alpha-beta swap and alpha expansion) for 
stereo matching.   

a. Give an example of a scene for which you would expect graph cuts to 
work better than dynamic programming in stereo matching. 

b. Give an example in which dynamic programming would outperform 
graph cuts. 

11. Epipolar geometry and triangulation.  You should understand how the 
epipolar constraint is derived, and what the epipole is.  You should 
understand how to use triangulation to find the depth of an object.  And you 
should understand rectification.  Understand the implications of this picture: 

 
 
 and this equation: 
 

Epipolar Constraint

• Most powerful correspondence 

constraint.

• Simplifies discussion of depth recovery.

Stereo correspondence

• Determine Pixel Correspondence

– Pairs of points that correspond to same 

scene point

• Epipolar Constraint

– Reduces correspondence problem to 1D 

search along conjugate epipolar lines

epipolar plane
epipolar lineepipolar lineepipolar lineepipolar line

(Seitz)



 
 

a. Suppose we take a pair of stereo images, but one camera is on top of 
the other (for example, focal points at (0,0,0) and (0,10,0), and image 
plane at z = 1.  What are the epipolar lines? 

b. Pick two image points that could be matched consistently with this 
epipolar geometry.  Determine their depth. 

 
12. The eight point algorithm.  Understand what the essential matrix is.  Why is it 

rank deficient?  How does it encode epipolar constraints? 

 
 

a. Consider our standard stereo setup, with focal points at (0,0,0) and 
(10,0,0) and an image plane of z = 1.  What is the essential matrix for 
this setup?  (To answer this, you have to have a way of turning points 
on the image plane into 2D points.  For example, when the focal point 
is at (10,0,0) we could consider the point (10,0,1) to be the origin of 
the second image). 
 

13. Optical flow and corner detection.  Understand the optical flow equation and 
how it is derived 

 

 
 and the equation for the Lucas-Kanade solution to optical flow.  

 
 
 Also understand how to use the matrix on the left to find corners. 
 

a. Make up an image, and find the optical flow at different points on it. 
b. Implement a corner detector based on the above and try it on some 

images (this is only a few lines of code). 
 

14. Motion flow fields.  Understand the equations of image flow: 
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Figure 7.3 Epipolar geometry: The vectors t = c1 − c0, p − c0 and p − c1 are co-planar

and define thebasic epipolar constraint expressed in terms of thepixel measurements x 0 and

x 1.

Taking the dot product of both sides with x̂ 1 yields

d0x̂
T
1 ([t ]⇥R )x̂ 0 = d1x̂

T
1 [t ]⇥x̂ 1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say

this is that the cross product matrix [t ]⇥ is skew symmetric and returns 0 when pre- and

post-multiplied by thesame vector.)

Wetherefore arriveat the basic epipolar constraint

x̂ T1 E x̂ 0 = 0, (7.10)

where

E = [t ]⇥R (7.11)

iscalled theessential matrix (Longuet-Higgins 1981).

An alternativeway to derive the epipolar constraint is to notice that in order for the cam-

erasto beoriented so that therays x̂ 0 and x̂ 1 intersect in 3D at point p, thevectorsconnecting

the two camera centers c1 − c0 = −R − 1
1 t and the rays corresponding to pixels x 0 and x 1,

namely R − 1
j x̂ j , must beco-planar. This requires that the triple product

(x̂ 0, R
− 1x̂ 1,−R

− 1t ) = (Rx̂ 0, x̂ 1,− t ) = x̂ 1 · (t ⇥Rx̂ 0) = x̂
T
1 ([t ]⇥R )x̂ 0 = 0. (7.12)

Notice that the essential matrix E maps a point x̂ 0 in image 0 into a line l 1 = E x̂ 0

in image 1, since x̂ T1 l 1 = 0 (Figure 7.3). All such lines must pass through the second

epipolee1, which is thereforedefined as the left singular vector of E with a0 singular value,

or, equivalently, the projection of the vector t into image 1. The dual (transpose) of these
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a. Using these equations, show that when a camera doesn’t rotate, the 
flow of a point depends only on its image position, not its depth. 

b. Show how to compute the epipole of an image, given the camera 
motion, when the camera is translating but not rotating.  Prove that if 
the camera is only translating in the x direction, the epipolar lines are 
all horizontal. 

c. These equations seem to suggest that flow depends on the focal length 
when there is translation in the x or y direction, and/or when there is 
rotation about the x or y axis, but not when there is translation in the 
z direction, or about the z axis.  Is this really true?  Can you explain 
why in a more intuitive way? 

  
 
15. Bag-of-words algorithm for classification.  Understand the basic idea of bag 

of words classification.  Understand how to create visual words through K-
means.  Understand what a Support Vector Machine does.  What is a linear 
classifier?  What is a maximum margin linear classifier? 
 

16. Convolutional Neural Networks. Understand the basic idea of training a 
network using backpropagation, of weight sharing, and of pooling. 

 
 
 


