Lighting affects appearance

How do we represent light? (1)

Ideal distant point source:

- No cast shadows
- Light distant
- Three parameters
- Example: lab with controlled

light

Shadows

Attached Shadow Cast Shadow

How do we represent light? (2)

Sky

- Environment map: *l*(θ,φ)
 - Light from all directions
 - Diffuse or point sources
 - Still distant
 - Still no cast shadows.
 - Example: outdoors (sky and sun)

Lambertian + Point Source

 $\vec{l} = l \bullet \vec{l} \quad \begin{cases} \vec{l} \text{ is direction of light} \\ l \text{ is intensity of light} \end{cases}$

$$i = \max(0, \lambda(\vec{l} \bullet \hat{n}))$$

- *i* is radiance
- λ is albedo
- \hat{n} is surface normal

Lambertian, point sources, no shadows. (Shashua, Moses)

- Whiteboard
- Solution linear
- Linear ambiguity in recovering scaled normals
- Lighting not known.
- Recognition by linear combinations.

Linear basis for lighting

With Shadows: PCA

(Epstein, Hallinan and Yuille; see also Hallinan; Belhumeur and Kriegman)

	Ball	Face	Phone	Parrot
#1	48.2	53.7	67.9	42.8
#3	94.4	90.2	88.2	76.3
#5	97.9	93.5	94.1	84.7
#7	99.1	95.3	96.3	88.5
#9	99.5	96.3	97.2	90.7

Dimension: $5 \pm 2D$

Domain

n

 $l\lambda \max(\cos\theta, 0)$

 θ

LambertianEnvironment map

l

Lighting to Reflectance: Intuition

3

3

Spherical Harmonics

- Orthonormal basis, h_{nm} , for functions on the sphere.
- n'th order harmonics have 2n+1 components.
- Rotation = phase shift (same n, different m).
- In space coordinates: polynomials of degree n.
- S.H. used for BRDFs (Cabral et al.; Westin et al;). (See also Koenderink and van Doorn.)

$$h_{nm}(\theta,\phi) = \sqrt{\frac{(2n+1)}{4\pi} \frac{(n-m)!}{(n+m)!}} P_{nm}(\cos\theta) e^{im\phi}$$
$$P_{nm}(z) = \frac{(1-z^2)^{m/2}}{2^n n!} \frac{d^{n+m}}{dz^{n+m}} (z^2-1)^n$$

S.H. analog to convolution theorem

• Funk-Hecke theorem: "Convolution" in function domain is multiplication in spherical harmonic domain.

k

• *k* is low-pass filter.

Harmonic Transform of Kernel

Amplitudes of Kernel

Energy of Lambertian Kernel in low order harmonics

Accumulated Energy

Reflectance Functions Near Low-dimensional Linear Subspace

$$r = k * l = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (K_{nm} L_{nm}) h_{nm}$$
$$\approx \sum_{n=0}^{2} \sum_{m=-n}^{n} (K_{nm} L_{nm}) h_{nm}$$

Yields 9D linear subspace.

How accurate is approximation? Point light source

Amplitude of k

Amplitude of l = point source

9D space captures 99.2% of energy

How accurate is approximation? (2) Worst case.

DC component as big as any other.1st and 2nd harmonics of light could have zero energy

9D space captures 98% of energy

Forming Harmonic Images

$b_{nm}(p) = \lambda r_{nm}(X,Y,Z)$

λ		λZ	λΧ	λΥ
$2\lambda(Z^2-X^2-Y^2)$	$\lambda(X^2-Y^2)$	λΧΥ	λXZ	λΥΖ

Compare this to 3D Subspace

Accuracy of Approximation of Images

- Normals present to varying amounts.
- Albedo makes some pixels more important.
- Worst case approximation arbitrarily bad.
- "Average" case approximation should be good.

Photometric Stereo

Albedos

Shape (normals only)

Two Stages of Photometric Stereo

- Local: given many images of pixel, determine surface normal.
- Global: Given set of surface normals, convert them into a surface.
 - Surface" means z = f(x,y).
 - This has one DOF per pixel
 - Normal has two DOFs per pixel
 - Surface -> nonlinear constraint on normals.

Local

- $I(x,y) = \langle L, \lambda n(x,y) \rangle$
 - With known lighting and albedo, this is linear with 3 unknowns, non-linear constraint.
 - Linear with unknown albedo/lighting intensity.
 - With unknown lighting, linear with global ambiguity in lighting
 - Global surface constraints disambiguate this up to a "bas-relief" transformation.
 - With known lighting, albedo, global constraints, one unknown per pixel.
 - This is shape from shading; solvable with boundary conditions.

Constraint: I, IX, IY must generate harmonic space near images ($\widetilde{S}_1, \widetilde{S}_2, \widetilde{S}_3, \dots$).

- 4D: solved with simple linear algebra.
- 9D: solved iteratively.

Update 27 variables with generic optimization

I, IX, IY

9D Method (cont'd)

 Optimization efficient: 27 unknowns not 3n. Simple, linear method of computing error.

- Good starting point.
- Linear ambiguity in solution:

- Linear transformation of $(\lambda X, \lambda Y, \lambda Z)$ leaves harmonic images unchanged, to 1st order.

Experiments

- 64 pictures of volleyball, single point source.
- 32 pictures of face, two sources each.
- 20 pictures each of other objects, multiple sources
- Saturated points filled in.
- Linear ambiguities resolved by hand.
- Normals -> surface using standard method.

Experiment 1

4D

Experiment 2

4D

9D

Ground Truth

4D

Ground Truth

9E

4D

Ground Truth

4D

9D

Ground Truth

4D

