
Markov chains and Markov Random Fields (MRFs)

1 Why Markov Models

We discuss Markov models now. This is the simplest statistical model in which we don’t assume
that all variables are independent; we assume that there are important dependencies, but also
conditional independencies that we can take advantage of. Markov models show up in a lot of
ways in computer vision. For example:

• In modeling texture, we can represent a patch of an image by output of a large number of
filters. If we assume that some of these filter outputs are dependent on each other (for exam-
ple, filters at adjacent scales), but that there is conditional independence between different
filter outputs, we can get a tractable model for use in texture synthesis.

• The shape of contours can be modeled as a Markov chain. In this approach, the future
course of a contour that passes through point x might depend on the tangent of the contour
at x, but not on the shape of the contour prior to reaching x. This oversimplifies, but is
implicitly used in many approaches to perceptual grouping and contour segmentation.

• In action recognition, we often model the movements that constitute an action as a Markov
chain. This assumption means, for example, that if I want to predict what is about to happen
when someone is in the middle of leaving work and getting in their car, that this will depend on
their current state (where is the person and car right now, and what is their current trajectory)
but not on previous states (once you are standing in front of the car, how you will get in
doesn’t really depend on how you left the building and arrived in front of the car).

• Again, in modeling texture, we might assume that the appearance of a pixel in a textured
image patch will depend on some of the surrounding pixels, but given these pixels, it will be
independent of the rest of the image.

2 Markov Chains

We will start by discussing the most simple Markov model, a Markov chain. We have already
talked about these a little, since diffusion of a single particle can be thought of as a Markov chain.
We can also use Markov chains to model contours, and they are used, explicitly or implicitly, in
many contour-based segmentation algorithms. One of the key advantages of 1D Markov models
is that they lend themselves to dynamic programming solutions.

In a Markov chain, we have a sequence of random variables, which we can think of as de-
scribing the state of a system, x1, x2, xn. What makes them Markov is a conditional independence
property that says that each state only depends on the previous state. That is:

P (xn|x1, x2, xn−1) = P (xn|xn−1)

Diffusion of a single particle offers us a simple example of this. Let xi be the position of a
particle at time i. Suppose at each time step, the particle jumps either one unit to the left or

1

right, or stays in the same place. We can see that xi depends on xi−1, but that if we know xi−1
the previous values of x are irrelevant. We can also see that this is a stochastic version of the
deterministic diffusion we’ve studied. If there are many particles, we can use the law of large
numbers to assume that a fixed fraction of them jump to the left and right. Remember that we
saw that the position xi will have a Gaussian distribution for large i, because of the central limit
theorem.

Markov chains have some nice properties. One is that their steady state can be found by
solving an eigenvalue problem. If a Markov chain involves transitions between a discrete set of
states, it’s very useful to describe these transitions from state to state using vectors and matrices.
Let ptj be the probability of being in state j and time t. Now let’s put these in a vector, so that:
pt = (pt1, , p

t
n) gives the probability distribution over all states we can be in. These are probabilities

because even if the state at time 0 is deterministic, after that it will be stochastic. Notice that∑
j p

t
j = 1. Now, the Markov model is completely specified by the probability that if I’m in state sj

at time t − 1 that I’ll be in state si at time t, for all i and j. (In principle, these probabilities might
also depend on t, that is, vary over time, but I’ll assume for now that they don’t.) We build a matrix
with these probabilities, called A, with entries Aij . Notice that every column of A has to sum to 1
because if I am in state j at time t− 1 I have to move to exactly one state at time t.

This is convenient, because we have: pt = Apt−1. This just says that the probability that I wind
up in, eg., state 1 at time t is the sum of the probability that I’m in state i at time t− 1 and move to
state 1, for all possible i’s.

Notice that this is more general than the diffusion processes we solved with convolution. This
matrix multiplication is only equivalent to a convolution if the matrix is a band around the diagonal,
with every row the same, but shifted.

This formulation makes it easy to study the asymptotic behavior of a Markov chain. It is just
the limit of:

A(A((A(p0))) = An(p0)

Notice that because A is stochastic, the elements of pt always sum to 1.
As an example, let’s consider the simple Markov chain given by: A = [.75.5; .25.5]; Using

Matlab, we can see that if we pick p randomly and apply A to it many times we get [2/3, 1/3] as our
answer. We can work out that this is a steady state of the system. Suppose we have pt = [2/31/3].
Then the chances that we will wind up in state 1 at time t+1 is 2/3 ∗ 3/4 + 1/3 ∗ 1/2 = + 1/6 = 2/3.

We can also see, with Matlab, that this asymptotic state is an eigenvector of A. This is because
this repeated multiplication is just the power method of computing the eigenvector associated with
the largest eigenvalue of A. That is, if we keep multiplying p by A, the result converges to the
leading eigenvector. This is true regardless of the initial condition of p.

Proof by example: Suppose p = av1 + bv2, where v1 and v2 are eigenvectors of A, with asso-
ciated eigenvalues of λ1 and λ2. Then:

A(av1 + bv2) = A(av1) +A(bv2) = aλ1v1 + bλ2v2.

And similarly: An(av1 + bv2) = a(λ1)
nv1 + b(λn2)v2. As n goes to infinity, if λ2 is a smaller than λ1,

it will become insignificant, and the larger eigenvalue dominates. The result converges to a vector
in the direction of v1. This also means that the leading eigenvalue of A must be 1; this happens
because A is a stochastic matrix.

2

I’ve skipped some conditions needed to prove this. First, the stochastic process must be
ergodic. This means that we can get to any state from any other state. Otherwise, we might start
in one state and never be able to get to the leading eigenvector from it.

Second, the Markov chain must have a unique leading eigenvalue. Otherwise, the result could
vary among linear combinations of the leading eigenvectors. Or the result might not converge, but
could be periodic. For example, if

A = (
0 1
1 0

)

then (12 ,
1
2) is an eigenvector, but the result can also oscillate. Third, the initial condition must be

generic. If it has no component of the leading eigenvector in it, it can’t converge to that.
So the leading eigenvector of the transition matrix gives us a probability distribution over the

asymptotic state. This can also be interpreted as the expected fraction of time the system stays in
each state, over time. This makes sense, since the probability that the system is in a state at time
n is the expected amount of time it spends there at time n.

Markov Random Fields

Markov chains provided us with a way to model 1D objects such as contours probabilistically, in
a way that led to nice, tractable computations. We now consider 2D Markov models. These are
more powerful, but not as easy to compute with. In addition we will consider two additional issues.
First, we will consider adding observations to our models. These observations are conditioned on
the value of the set of random variables we are modeling. (If we had considered observations with
Markov chains, we would have arrived at Hidden Markov Models (HMMS), which are widely used
in vision and other fields).

In MRFs, we also consider a set of random variables which have some conditional indepen-
dence properties. We introduce some terminology which is slightly different from the 1D case. We
say that the MRF contains a set of sites, which we may index with two values, i and j, when we
wish to emphasize the 2D structure of the sites. So we might talk about site Si,j and it’s horizontal
neighbor, Si+1,j . It may also be convenient to use a single index, referring to sites as Si. In this
case, the order of the sites is arbitrary.

We also suppose that we have a set of labels, Ld. Labels might take on continuous values, but
we’ll assume that we have a discrete set of labels. Every site will have a label. So the sites may
be thought of as random variables that can take a discrete set of values. A labeling assigns a label
to every site. We denote this as f = {f1, ..., fm}, so that fi is the label of site Si.

Next, we assume that our sites have a neighborhood structure. Ni denotes all the sites that are
neighbors to Si. That is, Sj ∈ Ni means Sj and Si are neighbors. We can define any neighborhood
structure that we want, with the constraint that being neighbors is symmetric, that is, that Sj ∈
Ni ⇔ Si ∈ Nj . Also, a site is not its own neighbor. We denote the set of all neighborhoods as N .

This neighborhood structure now allows us to define the Markov structure of our distribution.
We say that F is an MRF on S with respect to N if and only if:

P (f) > 0, ∀f

and
P (fi|fS−{i}) = P (fi|fNi)

3

The first condition is needed for some technical reasons. It means that in modeling we can’t make
any labeling have 0 probability, but since the probability can be very small this isn’t much of a
restriction. The second condition provides the Markov property.

As an example of this, let’s consider the problem of segmenting an image into foreground and
background. We can assign a site to every pixel in the image. Our label set is binary, indicating
foreground or background. Suppose we wish to encode the constraint that foreground regions
tend to be compact, by stating that if a pixel is foreground, its neighboring pixels are also likely
to be foreground. We can define a simple neighborhood structure based on 4-connected neigh-
bors. That is, Ni,j = {Si−1,j , Si+1,j , Si,j−1, Si,j+1} (notice how we switch from using one to two
subscripts). Then with the conditional probabilities available to us, we can encode constraints
such as that if all of a pixels neighbors are foreground, it is probably foreground, if all its neighbors
are background, it is probably background, and in other cases, it is fairly likely to be either. (You
may also notice that this MRF has no connection yet to the intensities in the image. This will be
handled below.)

MRFs and Gibbs Distributions

Given any set of random variables, there are a number of natural problems to answer. First,
given an MRF it is straightforward to determine the probability of any particular labeling. However,
figuring out what set of conditional probabilities to use in an MRF is not so simple. For one thing, an
arbitrary set of conditional probabilities for different sites and neighborhoods may not be mutually
consistent, and it is not obvious how to determine this. Finally, a key problem will be to find the
most likely labeling of an MRF.

These problems are made easier by the use of Gibbs distributions, which turn out to be equiv-
alent to MRFs, but in some ways are much easier to work with. In a Gibbs distribution, the cliques
capture dependencies between neighborhoods. A set of sites, {i1, i2, ..., in} form a clique if for all
k, j, ik ∈ Nj . Given a probability distribution defined for a set of sites and labels, we say that it is
a Gibbs distribution if the distribution is of the following form:

P (f) =
1

Z
e−

U(f)
T (1)

in which the energy function, U(f), is of the form:

U(f) = Σc∈CVc(f)

where C is the set of all cliques, and Vc(f) is the clique potential, defined for every clique. That is,
P (f) is an exponential function over the sum of potentials that can be defined independently for
each clique. This is analogous to the independence structure given by neighborhoods in MRFs.
In the above terms, T is a scalar called the temperature. In the above equation, Z is a normalizing
value needed to make the probabilities sum to 1:

Z = Σf∈F e
−U(f)

T

T is a scalar that determines how sharply peaked the distribution is; note that as T becomes very
small, the distribution is dominated by its most likely element.

4

The main reason Gibbs distributions are important to us is that they turn out to be equivalent
to MRFs. That means that for any MRF, we can write it’s probability distribution in the form of
Equation 1. That means that in learning or designing an MRF, we can focus on finding the clique
potentials. Note that to fully specify this distribution is still hard, since we must determine the
value of Z. A straightforward way of computing this involves computing a sum with an exponential
number of terms. There is a lot of work on approximating this value. However, in many cases we
don’t need it, because to find the MAP distribution for an MRF we just have the problem of finding
the labeling that minimizes the energy function U(f), since Z is a constant factor that applies to
all labeling. Finding the labeling that minimizes U(f) is still an NP-hard combinatorial optimization
problem in most cases, but there are many algorithms that attack this problem.

MRFs with Observations

So far, we have only considered distributions over labels. This amounts to a means for specifying
a prior distribution over labeled images. But we also want to connect this with the information in a
specific image. To do this, we’ll use examples in which every site is a pixel, so that there is one
piece of image information at each site. We’ll call the image information X, with the information at
each pixel given by Xi or Xi,j . We are then interested in solving problems like:

argmaxfP (f |X)

To make this concrete, let’s consider an example of image denoising. We consider an MRF in
which each pixel is a site, and two pixels are neighbors if they are 4-connected. Suppose every
pixel has an intrinsic intensity from 0 to 255, given by its label. Xi is this intensity, with noise
added, so that

Xi = fi + ei

where the ei are iid and drawn from a zero mean, Gaussian distribution with variance σ2. Using
Bayes law we have:

P (f |X) =
P (X|f)P (f)

P (X)

To compute this we have:
P (X|f) = ΠP (Xi|fi)

Note that each Xi is conditionally independent of all labels, given fi, ie., that

P (Xi|f) = P (Xi|fi)

and also that the Xi are independent of each other given the labels, ie., that:

P (X|f) = ΠP (Xi|f)

Our noise model states that the P (Xi|fi) will be a Gaussian distribution with mean fi, so that:

P (Xi|fi) =
1√

2πσ2
e

(fi−Xi)
2

2σ2

5

Therefore, we can define the clique potential:

Vc(fi) =
(fi −Xi)

2

2σ2

(Note we can ignore constant factors, since we normalize anyway with Z). These are the unary
cliques, which capture the data (pixels). If we want to, we can add to this a prior on different labels.

We can also define a pairwise clique potential to encode the prior that neighboring pixels
should have similar intensities. The simplest way to do this is to define:

For c = {i, j}
Vc = 0 fi = fj

Vc = k fi 6= fj

This biases us to have piecewise constant regions in the restored image. On the other hand, if we
give:

Vc = ‖fi − fj‖

we penalize according to the total variation in the image.

Computing MAP estimates of MRFs and CRFs

There are several kinds of computations that we might want to perform with MRFs and CRFs.
These include learning the clique potentials and other parameters, finding a MAP estimate of
the labels, given an MRF/CRF and image information, sampling from the conditional distribution
(instead of just getting a MAP estimate). We will focus mainly on the MAP estimate problem, since
this is very useful.

Initialization: All these algorithms are iterative, and the results can depend on how the solution
(labeling) is initialized. The simplest initialization method is to compute the MAP estimate using
only the unary clique potentials. So, for denoising, for example, we would initialize the labels to
be the corresponding pixel intensity. Of course, there are many other standard heuristics, such
as using domain knowledge (ie., a prior on the labels), or trying many random initializations and
picking the one that leads to the best solution.

Iterated Conditional Modes: This is the simplest, greedy algorithm. Visit the sites in some
order, and for a given site, Si, choose the label fi that maximizes P (f) given that all other labels are
fixed. Notice that this only requires computing the clique potentials that include Si for all possible
labels, so this requires computation that is linear in the number of labels. ICM is efficient, but can
quickly converge to a poor local minimum. It is likely to work well when the unary clique potentials
are very strong (note that in the limit, as the unary clique potentials dominate, ICM produces the
global optimum.)

Simulated Annealing: This method uses stochastic optimization to avoid some of the local
minima that occur with ICM. The idea is to randomly change a label, and then accept this change
with a probability that depends on the extent to which this change increases or decreases the
overall probability of the labeling. For example, given a set of nodes with labels, f , we randomly
select a site, Si and consider changing the label to f ′i . We let f ′ denote this new label set containing
f ′i . Let p = min(1, P (f ′)/P (f)). Then we replace f with f ′ with probability p. This results in our

6

always accepting a change that improves the labeling, but also in our accepting changes that
reduce the probability of the labeling. This can allow us to escape from labelings that are locally,
but not globally optimal.

Note that the distribution P (f) becomes very flat for large values of T , and more peaked as T
decreases. To take advantage of this, we use an annealing schedule in which T begins with a high
value, and gradually decreases. This means that at first we make changes to the labeling almost at
random, often moving to less probable labelings, and then gradually move more deterministically
only to more probable labelings. It can be proven that if the annealing schedule is chosen properly
this will converge to the globally optimal solution, but of course since the problem is NP-hard, this
must require an annealing schedule that uses an exponential amount of time.

Belief Propagation: Belief propagation allows for exact inference in graphical models that
do not contain loops, such as Markov chain models or models with a tree structure. It has been
shown that this can also lead to effective inference in models with loops, such as MRFs, but we
won’t discuss this algorithm.

Graph Cuts:
We’ll talk more about this in the next class.

7

