

Problem Set 1
CMSC 733

Due September 30, 2014

Written Exercises

1. Consider a 1D signal that is a Gaussian, centered at 0, with a standard deviation of

σ1. (5 points)

2
1

2

2
x

1

e
2
1 σ

πσ
−

What is the result of convolving this with a zero mean Gaussian with a standard
deviation of σ2? Give an analytic expression.

2. Let Gσ be a 1D, zero mean Gaussian filter with a standard deviation of σ. Let u(t)
= Gσ*cos(t), that is, the cosine function filtered with the Gaussian. If u(0) = .9,
what is the value of u(π/8), u(π/4), u(π/2)? (5 points)

3. We will define the Haar wavelet basis as a family of functions, Ψm,n for m and n
taking on any integer values. First, define:

Ψ (x) = 1 if 0<=x<=1/2
Ψ (x) = -1 if ½<=x<=1
 = 0 otherwise

Then define Ψm,n = 2-m/2 Ψ(2-mx-n).

a. Show that the Haar wavelets are orthogonal. (5 points)
b. Show that they are orthonormal as well (ie, they are of unit magnitude). (5

points)
c. Show that they form a basis for any function f that is square integrable

(see Wikipedia for a definition). (10 points)

For this problem it is fine to look in reference material for a solution, just cite any
references that you use, and restate the solution in your own words.

Programming Exercises

The goal of this assignment is to write a simple edge detector based on the Canny edge
detector. Your program will identify pixels in which the magnitude of the gradient is a
local maxima when compared to two neighboring points in the direction of the gradient.
To compute this you must smooth the image prior to finding the gradient. Then you must
compute the gradient magnitude and direction. Using the gradient direction, for each
pixel, (x,y), you will compute two points, one in the direction in which the image
intensity is increasing most rapidly, the other in the opposite direction, where the
intensity is decreasing most rapidly. You will compare the gradient magnitude at (x,y) to
the magnitude at these two points. (x,y) is an edge only if its gradient is bigger than at
these two points.

Keep in mind that whenever you do image filtering, you should use the option ‘replicate’
for handling boundary pixels. Note that to use the test functions we describe below, you
will have to name your functions the same as ours, or modify our test functions. For
example, to use the test function test_smooth_image you will have to name your function
smooth_image in the first problem.

Hint: It will be a good idea to turn your image into a matrix of floating point numbers
using the double function. If not, you will get into trouble, because images are
constrained to be non-negative integers below 255. If, for example, the gradient is
sometimes negative, it cannot be stored in an image.

1. Image Smoothing (10 points) Write a function called “smooth_image” that will
smooth two images with a Gaussian filter. The function should take as input an
image and a value for sigma that will be used to smooth the image. You may use
the function fspecial to create the Gaussian filter, and the function imfilter to
perform correlation with it. You should be sure that the width of your filter is at
least six sigma, to fully capture the Gaussian. For example, if sigma is 1, you
might use a filter that has a length of 7 (the first odd number after 6*1). For
sigma = 2, you might use a filter of length 13.

You can test your function using the test function that we provide,
test_smooth_image. When we execute this test function, we get the following
result:

>> test_smooth_image
ans =

 Columns 1 through 7

 0.0050 0.0661 0.3397 0.7858 0.9983 0.7858 0.3397
 0.0661 0.8708 4.4776 10.3582 13.1602 10.3582 4.4776
 0.3397 4.4776 23.0227 53.2587 67.6658 53.2587 23.0227
 0.7858 10.3582 53.2587 123.2040 156.5322 123.2040 53.2587
 0.9983 13.1602 67.6658 156.5322 198.8760 156.5322 67.6658

 0.7858 10.3582 53.2587 123.2040 156.5322 123.2040 53.2587
 0.3397 4.4776 23.0227 53.2587 67.6658 53.2587 23.0227
 0.0661 0.8708 4.4776 10.3582 13.1602 10.3582 4.4776
 0.0050 0.0661 0.3397 0.7858 0.9983 0.7858 0.3397

 Columns 8 through 9

 0.0661 0.0050
 0.8708 0.0661
 4.4776 0.3397
 10.3582 0.7858
 13.1602 0.9983
 10.3582 0.7858
 4.4776 0.3397
 0.8708 0.0661
 0.0661 0.0050

Your results might be slightly different, if you produce a filter of a slightly
different size than we do. But they should be quite similar. Hand in your code
and the result of this test.

2. (10 points) Now write a function called “image_gradient” that will compute the
gradient of an image. Your function should take an image as input and return two
matrices. Each matrix will be the size of the original image. One will contain the
x component of the image gradient for each pixel, the other will contain the y
component of the gradient.

You can test your function using the test function that we provide,
test_image_gradient. When we execute this test function we get the following
result:

>> [Dx Dy] = test_image_gradient
Dx =
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000

 -3.5000 -6.0000 -4.0000 -2.0000 0 2.0000 4.0000 6.0000
3.5000
Dy =
 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -
3.5000
 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -
6.0000
 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -
4.0000
 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -
2.0000
 0 0 0 0 0 0 0 0 0
 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000
 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
4.0000
 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
6.0000
 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000
3.5000

Hand in your code and the result of this test.

3. (10 points) Now write a function called “gradient_magnitude_direction” to
compute the magnitude and direction of the gradient. This function should take as
input the two matrices produced by the previous function, which contain the x and
y components of the gradient. It should return three matrices, which contain the
magnitude of the gradient at each pixel, and the x and y components of the
direction of the gradient. That is, the second and third results will contain the
cosine of the direction of the gradient and the sine of the direction of the gradient.

You can test your function using the test function that we provide,
test_gradient_magnitude_direction. When we execute this test function we get
the following result:

[R, X, Y] = test_gradient_magnitude_direction
R =
 1.4142 2.2361 3.1623 4.1231
 2.2361 2.8284 3.6056 4.4721
 3.1623 3.6056 4.2426 5.0000
 4.1231 4.4721 5.0000 5.6569
X =
 0.7071 0.8944 0.9487 0.9701
 0.4472 0.7071 0.8321 0.8944
 0.3162 0.5547 0.7071 0.8000
 0.2425 0.4472 0.6000 0.7071

Y =
 0.7071 0.4472 0.3162 0.2425
 0.8944 0.7071 0.5547 0.4472
 0.9487 0.8321 0.7071 0.6000
 0.9701 0.8944 0.8000 0.7071

Notice that with these values, we can find in Matlab:

X.^2+Y.^2
ans =
 1.0000 1.0000 1.0000 1.0000
 1.0000 1.0000 1.0000 1.0000
 1.0000 1.0000 1.0000 1.0000
 1.0000 1.0000 1.0000 1.0000

This is because X and Y contain the cosine and sine of the direction of the
gradient, and cosine squared plus sine squared equals one. Hand in your code and
the result of this test.

4. (20 points) Now combine these functions together to create a function that will
find positions in the image in which the gradient is a local maxima, and
reasonably large. This function will take three inputs: an image, sigma, and t.
sigma is the parameter used in smooth_image to determine how much to smooth
the image. t is a threshold. We will only detect edges at pixels in which the
magnitude of the gradient is greater than this threshold. The output of this
function will be a binary matrix. For every pixel, there will be a 1 if there is an
edge at that pixel, and a zero if there is no edge.

A pixel will be an edge if it satisfies two criteria. First, it must be a local maxima
in gradient magnitude. That means that its gradient magnitude must be bigger
than that at two neighboring locations. These must be locations that are a distance
of one pixel away, and that are in the directions at which the gradient is changing
most rapidly. For example, suppose pixel (10,10) has a gradient direction that is
45 degrees from the x axis. We would describe this gradient direction as (.7071,
.7071). Then we can only have an edge at (10,10) if the magnitude of the gradient
there is bigger than the magnitude of the gradient at (10.7071,10.7071), and also
greater than the gradient magnitude at (9.2929, 9.2929). Note that these locations
do not have integer coordinates, so we must interpolate the gradient magnitude to
estimate its value at these locations. Since we haven’t discussed how to do this,
we will provide you with a Matlab function that performs this interpolation. This
function is called: interpolate_gradients. Look at the comments in this function
to see how to use it.

Test your function using the image of the swan in swanbw.jpg. We have provided
a second image, swanedges.jpg, which shows the output of our code when we run
on this image, using a value of 2 for sigma, and a value of 15 for t. Turn in your

code, and an image that shows the edges that your code produces when you run
with these same values. You may find it useful to use the Matlab function
imwrite.

5. (20 points): Now add hysteresis to your edge detector. It should take two
thresholds as input, along with the image and sigma. A pixel is an edge if the
gradient magnitude is greater than the first threshold, but also if the gradient
magnitude is bigger than the second threshold and it has a neighbor that is an edge
(note that this is a recursive definition). The image swanedges_h.jpg shows the
results of running this function with the swan image, with sigma = 2, and with
thresholds of 15 and 2. The results are not too different from those in
swanedges.jpg, but a little better in the beak and head of the swan and the bottom
of its body.

