
Problem Set 3

CMSC 733

Assigned October 14, 2014

Due October 28, 2014

E-M

The purpose of this problem is to implement the Expectation-Maximization algorithm

for the problem of grouping points into lines. That is, we assume that we are given a

set of points, and we want to find two lines that explain them. In the expectation step,

we find the line that minimizes the weighted sum of squares distance from points to

lines. The variance is estimated using the distance between each line and the points.

In the maximization step we assign (probabilistically) each point to each line based

on its distance to the lines. You can base your implementation on Yair Weiss’ notes:

http://www.cs.huji.ac.il/~yweiss/emTutorial.pdf

1. Line Fitting (10 points) Write a function that fits a line to data. Note that

Weiss describes a method for doing this using weighted least squares, which

essentially only looks at error in the y direction. This fits the examples below,

in which noise is added to the y coordinate. If you are interested, you can also

implement, for a small amount of extra credit, a total least squars method, that

takes account of the Euclidean distance between each point and the line, and

see what difference this makes. Test your function with the following set of

points (I’m using Matlab notation, in which ‘a:b:c’ means to select numbers

from a to c, in increments of b, and randn generates a random variable with

Gaussian distribution, zero mean and variance of 1):

(i) x=0:0.05:1; y=2*x+1

(ii) x=0:0.05:1; y=2*x+1+0.1*randn(size(x)).

(iii) x=0:0.05:1; y=(abs(x-0.5) < 0.25).*(x+1)+(abs(x-0.5) >=0.25).*(-x);

In all cases plot the data and the best fitting lines.

2. E-M (40 points) Write a function that estimates the parameters of two lines

using EM. It should get as input vectors x,y and return (a1,b1,c1), (a2,b2,c2)

the parameters of the two lines as well as the weight vectors w_1 and w_2.

(Set the free parameter sigma^2=0.1.)

a. Test your function on the data in part (iii) of the previous question.

Plot the data and the two fitted lines as estimated after each of the first

five iterations. Also, show in separate plots the membership vectors

after every iteration.

b. Experiment with adding Gaussian noise to the y coordinates. How

much noise can you add before the algorithm breaks.

http://www.cs.huji.ac.il/~yweiss/emTutorial.pdf

Mosaics

The goal of this problem set is to write code to form a mosaic of images. We begin with

two images that have overlapping fields of view (see below) and stitch them together into

a single, larger image. Our strategy is to use SIFT to locate feature points and their

descriptors. Each feature in one image is matched to a feature in the second image with

the most similar descriptor. Note that many, but not all of these matches will be correct.

To find a good set of matches we use RANSAC. We randomly pick three matches,

compute the affine transformation that relates these matches, and then apply these to all

the feature points. We repeat many times and pick the transformation that maps the most

feature points in one image near their matching feature point in the other image. Finally,

we use this transformation to combine the images.

We will give you code that computes SIFT features and descriptors for a single image.

(Actually, we give you instructions on retrieving this code). This code includes a Matlab

wrapper you can use to call SIFT. We also give you two test images, LR1 and LR2

(above), to use in testing your code.

DOWNLOAD SIFT CODE:

The code for finding SIFT features is due to Andrea Vedaldi. Go to www.vlfeat.org and

download the latest version of vlfeat code (0.9.19). Download the binary package. Then

follow the instructions under Matlab install on the menu on the left. Note that there is a

lot of documentation for everything, including all functions in VLfeat. You should just

need to execute the command:

run('VLFEATROOT/toolbox/vl_setup')

If you seem to need a compiler for the matlab mex file, it can be found at:

http://www.mathworks.com/support/compilers/R2014b/index.html

We include some skeleton code and a helper function, in the file ps3.m.

http://www.vlfeat.org/
https://exchange.umiacs.umd.edu/owa/redir.aspx?C=6XasYP2zSEq27cnpGdf0CPX4P3DeutFItW7oB0BrxRIZeQatCkJiIlTjYkoJzROziN6kAna61Os.&URL=http%3a%2f%2fwww.mathworks.com%2fsupport%2fcompilers%2fR2014b%2findex.html

Problems:

1. 5 points: Run the skeleton code to detect SIFT features in a white square on a

black background, and in the two images above. The results should look like this:

Essentially all the code you need to do this is given to you. The point of this

problem is just to get you started running SIFT. Include the resulting images in

your write-up.

2. 5 Points: Find Best Match. vl_sift returns two values, F and D. Each column of

F contains the x and y coordinates, orientation and scale of each feature. Each

corresponding column of D contains a descriptor for that feature. Write code that

takes every SIFT feature in image 2 and finds the feature in image 1 with the most

similar descriptor. You should compare two SIFT descriptors (which are

histograms) using SSD. That is, just compute the SSD of the appropriate columns

of the D that is computed for each image. If there are n features in image 2, the

output of this might be an nx5 array, in which each row contains the (x,y)

coordinates of a point in image 2, the point in image 1 that matches it best, and

the score of this match.

Now, using this code, write a function, find_best_match, which finds the three

matches that have the lowest SSD. Display both images with these points shown

in three different colors. That is, the images might each have a white disk,

indicating the location of the two points that match best, a green disk, showing the

points that match second best, and a blue disk, showing the points that match 3
rd

best. Run this on LR1 and LR2. Include the resulting images in your write-up.

The results should look like this (it’s a little hard to see the blue dot without

enlarging the image):

3. 5 points: Affine Transform. Write a function that takes three matching points as

input, and computes an affine transformation that maps three points from one

image to the matching three points in the second image. So executing:

 A = affine_transformation(p1,p2);

computes a 2x3 affine transformation, A, that maps the points in p2, represented

as a 2x3 matrix in which each column is a point, so that they match the points in

p1. Test this by running the code in ps6. You might get results like:

>> ps3(3)

ans =

 1.0e-15 *

 0.3331 0.2220 0.1110

 -0.0555 -0.2220 -0.4441

4. 5 Points: RANSAC. Now, perform RANSAC to find the best affine

transformation that maps the most points from image 2 to image 1. To do this,

perform the following steps:

a. Randomly pick three matching points, in the format computed in part 2.

b. Compute the affine transformation, A, that relates them, using part 3.

c. Apply A to all points in image 2.

d. For each point, p, in image 2, that has been matched to point q in image 1,

find out whether Ap is close to q (“close” might mean their Euclidean

distance is less than 2).

e. Count the number of points that are mapped by A to be close to their

matching point.

f. Repeat steps a-e many times (maybe a thousand?) and choose the A with

the highest total.

Test your code using part 4 of ps3. In this code, I construct a test case with

random points in p1 and p2, some of which are related by an affine

transformation. For example, you might get:

A =

 70.1550 77.2314 14.4582

 36.9972 9.5638 9.4105

Ares =

 70.1550 77.2314 14.4582

36.9972 9.5638 9.4105

5. 10 Points: Stitching. Now write a function, stitch(J, K, A), that will stitch

two images, J and K, together, using the affine transformation A. You must apply

the affine transformation A to K, and then combine it with J in a single image.

One way to think about this is to first create a new image, L, which you know will

be big enough to hold J and K together. Then, for every pixel in L, you can ask

whether this pixel lies inside J and/or whether, applying the inverse of A to this

pixel, it would lie in side K. If the answer to either question is yes, you can

retrieve the appropriate pixel value from the relevant image. If the value you

need comes from K, it will generally lie in between several pixels, so you could

use bilinear interpolation to retrieve the appropriate value. However, you might

find it easier to use the Matlab function, imtransform.

Test your code on LR1 and LR2 using two affine transformations. First, create an

affine transformation that will translate LR2 100 pixels in the x direction, to the

right of LR1. Next, create an affine transformation that will rotate LR2 by pi/16,

scale it by .8, and translate it 100 in the x direction and 50 in the y direction.

6. 5 points Now write a mosaic program that puts this all together. It runs SIFT on

each image, finds the best matching points, runs RANSAC to compute an affine

transformation, and uses this transformation to stitch the images together. The

results of my program are shown below.

7. 5 points: Now, take your own photos and run your program on them. Notice that

the affine transformation you computed in part 4 is almost a pure translation.

This is because I moved the camera very little between pictures. If you move the

camera too much, even an affine transformation won’t work well. See if you can

take two pictures that are well aligned by a more complicated affine

transformation. Show the pictures you started with, the result, and the affine

transformation that was computed.

8. 10 points: Often, due to automatic gain control or other factors, the overall

lightness of the images will be different. This looks bad when they are stitched

together. Even in the result in Part 6 this is a factor. You can see a slight line

where the images overlap, because the left image is a little lighter. Do some

research to find a way to normalize the images to remove this effect. Take images

that will demonstrate your results, and explain how you achieved them.

