
Problem Set 5 
CMSC 733 

Assigned Tuesday November 25, 2014  

Due Tuesday, December 9, 2014 

 

Bag of visual words image classification 
 

For this problem set you will design and implement the baseline algorithm for bag-of-

words classification. The dataset we are going to use is Caltech 101, which can be found 

at: 101_ObjectCategories.tar.gz (131Mbytes). To help you start and focus on 

algorithm design, we provide ps5.m with skeleton code that handles data import and 

organization. Simply download and extract the data to the same folder as the ps5.m file. 

Adjust the ‘dataDir’ variable according to your path to the Caltech 101 data.  

 

You are expected to fill all places marked by ‘TODO’ in the ps5.m file. Everything 

should be implemented from scratch, except as noted below.  (Note, it is not allowed to 

consult or make use of code that you might find on-line, beyond the code we provided). 

 

Note: we provide the skeleton code to help you develop the algorithm more easily. You 

are free to not follow the exact format for each function.  If you depart from this format, 

please document your choices. 

 

1. 20 points Write a function to extract feature descriptors from an image.  This 

should have the form: 

 
function descr = computeFeature(im,method) 

 

‘im’ is the image, ‘method’ is either ‘sift’ or ‘filter-bank’. You have to implement 

BOTH. 

 

‘sift’: 

 You can use ‘vl_feat’ to calculate SIFT descriptors in the image. You need 

to have the vl_feat software package installed, which you should have already 

done for the Mosaicing project. 

 

‘filter-bank’: 

 Consult this paper: 

 http://research.microsoft.com/pubs/67408/criminisi_iccv2005.pdf (last 

paragraph, Section 3). 

 The filter bank is made of 3 Gaussians (s  = 1,2,4), 4 Laplacian of 

Gaussians (s  = 1,2,4,8) and 4 first order derivatives of Gaussians (s  = 2,4 for x 

and y). You need to first convert the image to L*a*b space. You can do that by 

using MATLAB built-in function. See reference here: 

http://www.mathworks.com/help/images/converting-color-data-between-color-

spaces.html 

http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz
http://research.microsoft.com/pubs/67408/criminisi_iccv2005.pdf
http://www.mathworks.com/help/images/converting-color-data-between-color-spaces.html
http://www.mathworks.com/help/images/converting-color-data-between-color-spaces.html


After conversion, you can now convolve the image with each filter and aggregate 

responses for all pixels together to form the descriptor. 

 Specifically, the resulting ‘descr’ should be a 17-by-M matrix, where M = 

size(im,1)*size(im,2). 

 You can try different sizes and variances for those filters to achieve best 

performance. Your filter bank might look like this: 

 
 

Test your filters on some image and show the response map.  

 

2. 20 points Create a function that will learn vocabulary/dictionary/visual words 

from training data.  This can have the form: 

 
function vocab = getVocab(numWords,Train,…) 

 

You can use K-means to cluster the descriptors collected from training data. You 

can use ‘vl_kmeans’ function in the vlfeat package for this task. Here K equals 

‘numWords’. ‘vocab’ is a d-by-numWords matrix, where d is the length of the 

visual descriptor. ‘Train’ is a structure that stores feature descriptors for all 

classes (See code for detailed comments). ‘…’ means you may add other 

arguments if necessary. For example, you can pass in a parameter called 

‘ratioPerClass’ to control the portion of data used in each class to learn the 

vocabulary. 

 

 

3. 20 points Create a function that produces a histogram of visual words for a given 

image (the encoding step). This could have the form: 



 
function hist = encoding(vocab,descr,method,…) 

 

‘vocab’ is the vocabulary we just learned. ‘descr’ is the descriptors extracted from 

an image. The method is either ‘nearest-neighbor’ or ‘local-encoding’, you have 

to implement BOTH: 

 

‘nearest-neighbor’:  

Each descriptor is assigned to the closest visual words in vocab. This is a 

hard assignment. See the following example for illustration. The red ball indicates 

one testing feature. Blue balls are learned visual words. In nearest-neighbor 

encoding, we set the histogram to be [1 0 0 0] for this feature, since #1 visual 

word is closest to the testing feature. 

 

 

 

 

 

 

 

 

 

 

 

Histogram:  

 

 

‘local-encoding’:  

Instead, we can assign the k-nearest visual words to a descriptor, and 

produce a weighted histogram based on their distance to the descriptor. This is 

more like soft assignment. This method shares similar ideas with Locality-

constrained Linear Coding (LLC), but is much simpler.  

You may find local-encoding working better than nearest-neighbor in 

some classes. For example, you might see a 10% accuracy improvement in class 

‘rhino’.  
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Histogram:  

 

In this example, we have the same testing feature and visual words as 

above. Instead of hard assignment, we first compute the distance from the testing 

feature to the k-nearest visual words. Suppose k=4 for this case, we then build the 

histogram to be [10 4 4 1] so that every visual word contributes to the histogram. 

The weight of contribution reflects how similar each visual word is to the testing 

feature. 

You can try different ways to calculate the weight. For example, you can 

take the reciprocal of Euclidean distance, or fit a Gaussian kernel for each visual 

word.  

 

 

 

4. 40 points Now you can train a linear SVM classifier and run the test experiment. 

 

You can download the liblinear software package for the classifier: 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 

 

You should try to find the best parameter to use in liblinear. You will be using 

liblinear’s MATLAB interface. Use ‘train’ to train your classifier. After that, you 

should be able to calculate the response of the classifier by taking the inner 

product between the trained weight vector and the testing feature. See ‘liblinear-

1.96/matlab/README’ file for instruction in installation and usage. 

 

1 
2 

3 
4 

Soft assignment 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/


You are provided with a visualization function ‘showConfus’ to show the 

confusion matrix of the classification results, which might look like this (in a 5 

class example): 

 

Training validation 

 

 
                            



Testing 

 
You can test on a subset of Caltech 101. Try different configurations of 

parameters, and report the best result (e.g., number of words, choice of filter bank, 

encoding choice, SVM params…). Of course, don’t expect to get 100% correct! 

 

5. Extra Credit (up to 10 points): Excellent classification results have been 

achieved using features extracted by deep learning.  Caffe provides deep networks 

that have already been trained, making their use relatively simple.  For extra 

credit, use these features instead of SIFT descriptors, and compare their 

effectiveness.  Caffe is described at: http://caffe.berkeleyvision.org/.  Instructions 

on installing Caffe can be found at: 

http://caffe.berkeleyvision.org/installation.html.  Some information about its 

pretrained models are at: 

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/classificati

on.ipynb.   Unfortunately, installing caffe is not trivial, as it has many 

dependencies.  For this reason, you are free to work together or seek help from 

friends just in getting it installed (mention all sources of help).  We would have 

made this problem required, but the number of possible platforms and versions of 

software make it impractical for us to help you install Caffe. 

  
6. Extra Credit (up to 10 points): So far we are totally discarding the spatial 

information of descriptors.  This information has proven to be useful in image 

classification. Spatial Pyramid Matching (SPM) is a well-known method to 

overcome the loss of spatial information. Take a look at the paper: 

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/cvpr06b.pdf 

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/installation.html
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/classification.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/classification.ipynb
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/cvpr06b.pdf


 

Try to implement SPM (it is actually very simple, once you understand it) and 

report the performance difference. 

 

7. Extra Credit (up to 10 points): Andrea Vedaldi et al. described a method to 

calculate explicit feature map using Chi square kernel for histograms: 

http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf 

 

They show that bag of words classification in Caltech 101 can benefit from using 

this kernel mapping. You can try and report the performance difference. 

http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf

