
Main Points

• Cameras with known position.
• Stereo allows depth by triangulation
• Two parts:

– Finding corresponding points.
– Computing depth (easy part).

• Constraints:
– Geometry, epipolar constraint.
– Photometric: Brightness constancy, only partly true.
– Ordering: only partly true.
– Smoothness of objects: only partly true.

Matching

• Cost function: 
– What you compare: points, regions, 

features.
– How you compare: eg., SSD, correlation.

• How you optimize.
– Local greedy matches.
– 1D search.
– 2D search.



Why Stereo Vision?
• 2D images project 3D points into 2D: 
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• 3D Points on the same viewing line have the 
same 2D image:
– 2D imaging results in depth information loss

(Camps)

Stereo

• Assumes (two) cameras.

• Known positions.

• Recover depth.



Recovering Depth Information:

OO22

PP’’22=Q=Q’’22

PP
QQ

OO11

PP’’11
QQ’’11

Depth can be recovered with two images and triangulation. Depth can be recovered with two images and triangulation. 

(Camps)

So Stereo has two steps

• Finding matching points in the images

• Then using them to compute depth.



Epipolar Constraint

• Most powerful correspondence 
constraint.

• Simplifies discussion of depth recovery.

Stereo correspondence

• Determine Pixel Correspondence
– Pairs of points that correspond to same 

scene point

• Epipolar Constraint
– Reduces correspondence problem to 1D 

search along conjugate epipolar lines

epipolar plane
epipolar lineepipolar lineepipolar lineepipolar line

(Seitz)



Simplest Case

• Image planes of cameras are parallel.

• Focal points are at same height.

• Focal lengths same.

• Then, epipolar lines are horizontal scan 
lines.

blackboard

Suppose image planes are in z = 1 plane.

Focal points are on y = 0, z = 0 line.

Any plane containing focal points has form:

Ax + By + Cz + D = 0, with A = 0, D=0, since any point 
with y = 0 and z = 0 satisfies this equation.

Specifically, we could say focal points are (0,0,0) 
(10,0,0).  Then (0,0,0)*(A,B,C) + D = 0, so D = 0.  
(10,0,0)*(A,B,C) + D = 10A = 0  so A = 0.

So all planes through focal points have equation By + Cz 
= 0.  If we look at where these intersect the image planes 
(z=1) it’s at: By + C = 0.  These are horizontal lines.



We can always achieve this 
geometry with image 

rectification

• Image Reprojection
– reproject image planes onto 

common 
plane parallel to line between optical 
centers

• Notice, only focal point of camera really matters
(Seitz)

Let’s discuss reconstruction with this geometry before 
correspondence, because it’s much easier. blackboard
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Then given Z, we can compute X 
and Y.

Z  f
T

xl  xr

d  xl  xrDisparity:



Consider a simple example:

We have cameras with focal points at (-10,0,0) (0,0,0), focal lengths 
of 1 and image planes at the z=1 plane.

The world contains a 40x40 square in the z=100 plane, and it’s lower 
left corner at (0,0,100).  

The background is in the z=200 plane, with vertical stripes.  For 
example, one stripe has sides x=-5, x=5, with z=200.

In the left image the square has corners at (.1,0), (.5,0), (.1, .4) , (.5, 
.4).  In the right image, it’s at (0,0), (.4,0), (0,.4), (.4,.4).  The baseline 
is 10, the disparity is .1, so distance is 10/.1 = 100.

In the left image, the stripe is bounded by the lines x = .025, x = .05.  
In the right image, it’s -.025, .025.  So in the left image, the stripe is 
partly blocked by the square, in the right image it’s fully to the left of 
the square.  For the stripe, disparity is .05, so distance is 10/.05 = 
200.

Notice that a line segment with ends at (-10,0,200), (0,0,100) projects 
in the left image to (0,0),(.1,0) and in the right to (-.05,0) (0,0).  The 
line gets shorter in the right image due to foreshortening.

Some stereo problems:
1)Suppose we have two cameras that are side-by-side.  
The left camera sees a point at (1,2).  Give an equation 
for the line that contains the point.  Give an equation for 
a projection of this line into the other image, ie., the 
epipolar line.
2)Suppose we have a camera with focal point of (0,0,0) 
and image plane of x+z = 1.  We want to rectify this so 
that the image plane is z = 1.  Give equations for this.
3)Suppose we have an object that is moving towards 
us in a straight line of x=1, y = 1 at constant speed.  
Give an equation for the curve it traces in the image.
4)Are the epipolar lines always parallel?  Prove this or 
give an example where they are not.



Correspondence: What should 
we match?

• Objects?

• Regions?

• Edges?

• Pixels?

• Collections of pixels?



Julesz: had huge impact because it showed that 
recognition not needed for stereo.

Correspondence: Epipolar 
constraint.



Correspondence: Photometric 
constraint

• Same world point has same intensity in 
both images.
– Lambertian fronto-parallel

– Issues:
• Noise

• Specularity

• Foreshortening

Using these constraints we can 
use matching for stereo

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

• This will never work, so:

Improvement:  match windows

(Seitz)



Comparing Windows: ==
??
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For each window, match to closest window on epipolar 
line in other image.

Window size

W = 3 W = 20

Better results with adaptive window
• T. Kanade and M. Okutomi, A Stereo Matching 

Algorithm with an Adaptive Window: Theory and 
Experiment,, Proc. International Conference on 
Robotics and Automation, 1991. 

• D. Scharstein and R. Szeliski. Stereo matching with 
nonlinear diffusion. International Journal of 
Computer Vision, 28(2):155-174, July 1998 

• Effect of window 
size

(Seitz)



Stereo results

Ground truthScene

– Data from University of Tsukuba

(Seitz)

Results with window 
correlation

Window-based matching
(best window size)

Ground truth

(Seitz)



Ordering constraint
• Usually, order of points in two images is 

same.

• blackboard

Occlusions
• This means some points must go 
unmatched

Uniqueness

• One pixel cannot match more than one 
pixel.

This enables Dynamic 
Programming

• If we match pixel i in image 1 to pixel j in 
image 2, no matches that follow will 
affect which are the best preceding 
matches.

• Example with pixels.



First of all, we can represent a matching with a disparity map.
Since disparity is non-negative, we’ll use -1 to indicate an 
occlusion.  So a 1D disparity map for the left image could be: [-
1 1 1 -1 2 2 0]

This means the first pixel is occluded, the second has a 
disparity of 1, etc….  Notice that whenever there is an 
occlusion, the disparity will generally increase by one because 
we are advancing one pixel in the left image, without 
advancing in the right image (unless there’s been an occlusion 
at the same time in the right image). When the disparity 
decreases, this means there’s been an occlusion in the right 
image.

Next, given two images and a disparity map, we can assign a cost
to this hypothesized matching.  There are many ways to do this, but 
let’s look at a simple example.  When we match two pixels, the cost 
is the square of the difference in their intensities.  For every
occluded pixel, we assign a fixed cost.  (In the problem set, we
scale intensities to range from 0 to 1 and use an occlusion cost
of .01.

See Problem Set 7 for notes on how to find the disparity map with 
lowest cost using dynamic programming.



We can match the images one row at a time. 

We will assume that we can do two possible things.  One is to match two pixels, the second is to 
allow a pixel to go unmatched.  We will create a graph in which nodes represent choices about 
matching, and edges represent the cost of matching.  We will name a node in a way that indicates 
which pixels have been matched so far.  For example, if we reach node N(3,5) this will mean that 
the first three pixels in image 1, and the first 5 pixels in image 2, have all been taken care of.  From 
N(3,5) we can go to N(4,6).  This must mean that we take care of both nodes 4 and 6 in one step, 
by matching them together.  Or we can go to node N(3,6).  This means that node 6 in the second 
image is taken care of by not matching it to anything.  That is, node 6 in the second image is 
occluded.   Likewise, we could go to N(4,5).

We need a special start node, S.  This is connected to N(0,1), N(1,0) and N(1,1).  We need a 
special end node, E.  For example, if there are 9 pixels in each image, E will be connected to 
N(8,8), N(8,9), N(9,8).

Finally, we use edge weights to encode the cost of these choices.

E(N(i-1,j-1), N(i,j)) = (I1(i)-I2(j))^2.

E(N(i-1,j),N(i,j)) = OCCLUSION_PENALTY

Now when we take a path from S to E we are going through nodes that represent a matching of the 
images.  The cost of the path is the cost of the matching.  

Why do we need the ordering constraint to use this?

Suppose our images have the following two rows:
0 1 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0 0
Suppose the occlusion cost is .01.  The path from S to N(1,1) will have a cost of 0.  From S 
to N(1,0) will have a cost of .01.  
Notice that there will be two shortest paths.  Either the second or the fourth pixel in the first 
image may be occluded.



Other constraints

• Smoothness: disparity usually doesn’t 
change too quickly.
– Unfortunately, this makes the problem 2D 

again.

– Solved with a host of graph algorithms, 
Markov Random Fields, Belief 
Propagation, ….

• Occlusion and disparity are connected.

Correspondence with MRF

• Every pixel is a site.
• Label of a pixel is its disparity.
• Disparity implies two pixels match.  Prob. 

depends on similarity of pixels.
• Disparity at one pixel related to others since 

nearby pixels have similar disparities.  
Penalty based on different disparities at 
neighboring pixels.

• Finding best labeling is NP-hard, but good 
local algorithms exist.



swap

Min-Cut gives best swap

• Min-cut 
– requires edge to one label be cut.
– Cut between neighbors w/ diff. labels.

• Link to each label is cost of applying that 
label; cut means label is applied.

• Link between pixels = neighborhood cost (0 
when same label).

• Keep performing swaps with all pairs of 
disparities until convergence.



Results with graph cuts

Graph Cuts
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

(Seitz)

Summary

• First, we understand constraints that make 
the problem solvable.
– Some are hard, like epipolar constraint.

• Ordering isn’t a hard constraint, but most useful when 
treated like one.

– Some are soft, like pixel intensities are similar, 
disparities usually change slowly.

• Then we find optimization method.
– Which ones we can use depend on which 

constraints we pick.  


