Image classification by a Two Dimensional Hidden Markov Model

Author: Jia Li, Amir Najmi and Robert M. Gray

Presenter: Tzung-Hsien Ho

### Hidden Markov Chain





#### To implement a novel classifier for image segmentation

#### What's over there?

- LVQ (Learning vector quantization)
- BVQ (Bayes vector quantization)
- CART (Classification and regression trees)
- Pseudo-2D HMM
- Others... (PCA, LDA, neural networks, ...)

#### Pseudo 2D HMM

- Extension of 1D case
- Not real 2D model since it does not connect all the possible states
- There is a "superstate" existing in the first element of each row. All the superstates consist of a markov chain.
- Each row consists of an independent markov chain.

#### Pseudo 2D HMM



#### Markov Random Field (MRF)

 A tool to encode contextual constraints into the prior probability.
Define (1) neighbors (2) cliques (3) prior clique potential
Derive (4) likelihood energy (5) posterior energy

### Assumptions in the paper

#### Causal Markov Random Field



$$P(s_{i,j} \mid s_{i',j'}, u_{i',j'} : (i',j') \in \tilde{\Psi} \cup \Psi) = P(s_{i,j} \mid s_{i-1,j}, s_{i,j-1})$$

#### Mainframe of the paper

2D HMM Model 1. Expectation Maximum (EM) 2. Viterbi Algorithm for 2D case Feature Selections: 1. DCT coefficients & spatial derivatives of the average intensity value of blocks 2. Wavelets & Laplacian Measurement

## 2D HMM

- 1. Training:
- (a) Divide training images into non-overlapping blocks
- (b) Extract the features of each block
- (c) Select the number of states for the 2D-HMM
- (d) Estimate model parameters based on the feature vectors (v) and their hand-labeled class (c)

#### **Training Process**

 Expectation Maximization
Known: Mapping function from S and C E-Step: Compute Q(Φ| Φ<sup>p</sup>)

$$\begin{split} E(\log f(\mathbf{x} \mid \phi') \mid \mathbf{y}, \phi^{(p)}) &= \frac{1}{\alpha} \sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{y}, \phi^{(p)}) \cdot \sum_{(i,j) \in \mathbb{N}} \log a'_{s_{i-1,j}, s_{i,j-1}, s_{i,j}} + \\ &\frac{1}{\alpha} \sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{y}, \phi^{(p)}) \sum_{(i,j) \in \mathbb{N}} \log P(u_{i,j} \mid \mu'_{s_{i,j}}, \Sigma'_{s_{i,j}}) \,. \end{split}$$

where  $P(\mathbf{s} \mid \mathbf{y}, \boldsymbol{\phi}^{(p)}) = \frac{1}{\alpha} I(C(\mathbf{s}) = \mathbf{c}) \cdot \prod_{(i,j) \in \mathbb{N}} a_{s_{i-1,j}, s_{i,j-1}, s_{i,j}}^{(p)} \cdot \prod_{(i,j) \in \mathbb{N}} P(u_{i,j} \mid \mu_{s_{i,j}}^{(p)}, \Sigma_{s_{i,j}}^{(p)})$ 

## Training Process (cont.)

# Expectation Maximization M-Step: Choose Φ to maximize Q(Φ| Φ<sup>p</sup>)

$$a'_{m,n,l} = \frac{\sum_{(i,j)\in\mathbb{N}} H_{m,n,l}^{(p)}(i,j)}{\sum_{l=1}^{M} \sum_{(i,j)\in\mathbb{N}} H_{m,n,l}^{(p)}(i,j)}$$

2.5

 $H_{m,n,l}^{(p)}(i,j) = \sum_{\mathbf{s}} I(m = s_{i-1,j}, n = s_{i,j-1}, l = s_{i,j}) P(\mathbf{s} \mid \mathbf{y}, \phi^{(p)})$ 

$$\mu'_{m} = \frac{\sum_{i,j} L_{m}^{(p)}(i,j) u_{i,j}}{\sum_{i,j} L_{m}^{(p)}(i,j)}, \qquad L_{m}^{(p)}(i,j) = \sum_{s} L_{m}^{(p)}(i,j) u_{i,j} - \mu'_{m}(i,j) u_{i,j} u_{i$$

$$L_m^{(p)}(i,j) = \sum_{\mathbf{s}} I(m = s_{i,j}) P(\mathbf{s} \mid \mathbf{y}, \phi^{(p)})$$

#### Compute it? Thank for diagonal

**Forward:**  $\theta_T(d) = P\{\mathbf{s}(d) = T, \mathbf{u}(\tau) : \tau \leq d \mid \mathbf{M}\}$ 

 $\theta_{T_d}(d) \hspace{.1in} = \hspace{.1in} \sum_{T_{d-1}} \theta_{T_{d-1}}(d-1) \cdot P(T_d \mid T_{d-1}, \operatorname{\mathbf{M}}) \cdot P(\operatorname{\mathbf{u}}(d) \mid T_d, \operatorname{\mathbf{M}})$ 

Bakward:  $\beta_T(d) = P\{\mathbf{u}(\tau) : \tau > d \mid \mathbf{s}(d) = T, \mathbf{M}\}$  $\beta_{T_d}(d) = \sum_{T_{d+1}} P(T_{d+1} \mid T_d, \mathbf{M}) \cdot P(\mathbf{u}(d+1) \mid T_{d+1}, \mathbf{M}) \cdot \beta_{T_{d+1}}(d+1)$ 

Where Td: state sequences at dth diagonal

$$\begin{split} L_{m}(i,j) &= \sum_{T_{d}:T_{d}(i,j)=m} \frac{\theta_{T_{d}}(\Delta(i,j)) \cdot \beta_{T_{d}}(\Delta(i,j))}{P(\mathbf{u},\mathbf{c} \mid \mathbf{M})} C(m) = c_{i,j} \\ H_{m,n,l}(i,j) &= \sum_{T_{d}} \sum_{T_{d-1}} \frac{\theta_{T_{d-1}}(\Delta(i,j)-1)}{P(\mathbf{u},\mathbf{c} \mid \mathbf{M})} \cdot \frac{T_{l-1}(i-1,j) = m, T_{l-1}(i,j-1) = n}{T_{d}(i,j) = l} \\ P(T_{d} \mid T_{d-1}, \mathbf{M}) P(\mathbf{u}(d) \mid T_{d}, \mathbf{M}) \cdot \beta_{T_{d}}(\Delta(i,j)) \\ C(m) = c_{i-1,j}, C(n) = c_{i,j-1}, C(l) = c_{i,j} \end{split}$$

#### Simple example

- 1. Define # of states
- 2. Divided the image into sub-blocks and extract the features (U)of each block.
- 3. Given C(i,j) and random assign  $a_{m,n,1}$ ,  $\mu_m$  and  $\Sigma_m$
- 4. Use the parameters to find forward and backward probability based on each diagonal
- 5. Calculate  $L_m(i, j)$  and  $H_{m,n,l}(i, j)$
- 6. Use L and H to update  $a_{m,n,1}$ ,  $\mu_m$  and  $\Sigma_m$
- 7. Go back to step 4

## 2D HMM

- Recognition
- (a) Generate feature vectors for the testing image
- (b) Search for the set of classes with maximum a posteriori probability given the feature vectors according to the trained 2D HMM

### 2D Viterbi algorithm

- The computational complexity is (NxM-1)<sup>mo</sup>
- Any way to simplify?
- Using forward probabilities and applying the blocks of the diagonal to create markovian isolation sequence



#### 2D Viterbi algorithm

Reminder
Viterbi is used to maximize P(I,O | Φ)
For 2D, maximize P{s<sub>i,j</sub>, u<sub>i,j</sub>: (i, j) ∈ N}

 $P(T_0) \cdot P(T_1 \mid T_0) \cdot P(T_2 \mid T_1) \cdots P(T_{w+z-2} \mid T_{w+z-3}) \prod_{(i,j) \in \mathbb{N}} P(u_{i,j} \mid s_{i,j})$ 



Each point here infers a state sequence at Td

#### 2D Viterbi Algorithm (cont.)

It is infeasible. NP completeness
Proposition: path-constrained Viterbi algorithm



### 2D Viterbi Algorithm (cont.)

- In each diagonal, find the best N routes based on Σ<sup>ν</sup><sub>i=1</sub> γ<sub>i,si</sub> where v is the number of diagonal terms.
- We can simplify the constraints above by finding  $\max_{s_i}^{-1} \gamma_{i,s_i}$  for each *i*
- Best route searching
- Not a precise model. Two improvements
  - 1. Choose large N
  - 2. Divide original image into sub-images

#### Simple Example

- 1. Image input
- 2. Extract the features
- 3. In each diagonals, pick the best N sequences.
- 4. Use the normal viterbi to calculate

 $P(T_0) \cdot P(T_1 \mid T_0) \cdot P(T_2 \mid T_1) \cdots P(T_{w+z-2} \mid T_{w+z-3}) \prod_{(i,j) \in \mathbb{N}} P(u_{i,j} \mid s_{i,j})$ 

Now Ti is limited by the local maximizor 5. Find the highest score of S and C(s)=C

## **Aerial Image Segmentation**

- Goal: Try to differentiate the man-made or nature scenes from the aerial image
- # of states: 5 (3~6 are all available) for nature scene. 9 (7~10 are all available) for man-made scene
- Size of N: 32
- Block size: 4x4

#### **Aerial Image Segmentation**

#### Feature selection:

#### 1. Intra-block feature: DCT coefficients



1. 
$$f_1 = D_{0,0}$$
;  $f_2 = |D_{1,0}|$ ;  $f_3 = |D_{0,1}|$ 

2. 
$$f_4 = \sum_{i=2}^3 \sum_{j=0}^1 |D_{i,j}|/4;$$

3. 
$$f_5 = \sum_{i=0}^{1} \sum_{j=2}^{3} |D_{i,j}|/4$$
;

4. 
$$f_6 = \sum_{i=2}^3 \sum_{j=2}^3 |D_{i,j}|/4$$
.

## 2.Inter-block feature: Average intensity difference between neighbors (U,L)

#### Results

 Man-made scene as targets
Compared with three other methods (CART, LVQ (learning vector quantization) and BVQ)

| Algorithm | sensitivity | specificity | PVP    | $P_{e}$ |
|-----------|-------------|-------------|--------|---------|
| 2-D HMM   | 0.7795      | 0.8203      | 0.8381 | 0.1880  |
| CART 1    | 0.8528      | 0.7126      | 0.7530 | 0.2158  |
| CART 2    | 0.8097      | 0.7340      | 0.7505 | 0.2408  |
| LVQ1      | 0.8187      | 0.7419      | 0.7691 | 0.2183  |







Source

CART1

НММ

LVQ1

#### **Documentation segmentation**

- Goal: Segmentation of document images into text and photograph
- # of states: 4 (2~5 are available)
- Block size: 8x8
- Features:

Wavelet coefficients (Haar wavelet)

(1) Measure the goodness of match between the observed distribution and the Laplacian distribution. (  $\chi^2$  )

(2) Measure the likelihood of the wavelet coefficients being composed by highly concentrated values. (L)

#### **Documentation segmentation**

- How the hell does it work? (LH HL HH)
- $\chi^2$ : Divide the histogram of the wavelet coefficients into bins. fi: relative frequency of bin i and Fi: probability of the Laplacian distribution.

 $\chi^2 = \sum_{i=1}^{n} (fi - Fi)^2 / Fi$ 

L : the weight sum of the concentration level  $\beta$  i.  $\beta$  i is defined as the percentage of the data in a narrow neighborhood based on the total number of data in the zone.

#### Results

#### Error rate: fewer than 2% for HMM and CART



#### Conclusion

 2D HMM takes the inter-blocks relationship into account. That's why it stands out in most of the current classifier.

 2D HMM is still limited by the computational power of the machine. This paper provides a roughly correct version.

### Questions

- The computational cost of this algorithm is still high. Maybe not a good real-time processing algorithm.
- Parallel computing can be applied.
- Multi-scale (pyramid) processing may be able to assist the inter-block relations we lost in path-constrained viterbi algorithm.

#### Reference

- 1.Rakesh Dugad, U.B Desai, "A tutorial on hidden markov models", Technical Report No. SPANN-96.1, Bombay Powai, India May, 1996.
- Jeff A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models", Technical Report 97-021, International Computer Science Institute Berkley CA, April, 1998.
- J. Li and R.M. Gray, "Text and Picture Segmentation by the Distribution Analysis of Wavelet coefficients," Proceedings of International Conference on Image Processing, Chicago, Oct. 1998
- 4. L. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proceedings of the IEEE, vol. 77, pp. 257-286, 1989
- 5. S.Z. Li, "Markov Random Field Models in Computer Vision", ICCV 1994
- 6. JiangSheng Yu, "Expectation Maximization, An approach to parameter estimation", Class note, Peking University, China.

