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Outline

n Review different architectures for the recognition of
3D objects

n Compare the basically different approaches of object
centered and viewer centered representations

n Discuss biological findings and computational aspects

n Illustrate the advantages of viewer centered models
by some recent recognition systems

n Experimental studies on face perception
n Conclusion
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Introduction

n Why we need to talk about the representation
schemes of objects

n Object centered (viewpoint invariant) models
n Viewer centered (viewpoint dependent) models
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Object centered representations

N Generalized cones introduced by Marr and Nishihara

(1978)

N Geon structural descriptions (GSD) proposed by
Biederman (1987)

n Thompson and Mundy (1987) and Lowe (1986)

q based on surface descriptions built upon vertices, edges, and
surfaces in conjunction with their connection relation

n Have the one common purpose:

g The description of objects by high level features which
remain stable over all perspectives




Marr’s Stages of Visual Processing

N Marr described vision as processing from input of a 2-D
visual array (on the retina) to a 3-D description of the
world as output. His stages of vision include:

g Primal Sketch: based on feature extraction of fundamental
components of the scene, including edges, regions, etc.

q 21/2-D Sketch: depth and orientation of visible surfaces,
shading, texture, motion, binocular disparity; observer-
centered

q 3-D Sketch: 3-D description of objects independent of view
n Proposed that understanding the brain requires an

understanding of the problems it faces and the solutions
it finds
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Marr & Nishihara (1978)

n Development of 3-D sketch
based on processing of =

more elementary shape N "g‘(’delf R
primitives (basic primitive MW% Q| Qs 0
is a cylinder with a major 77 2] R
axis

) asy

n Hierarchical organization of
primitives
g Extended into “recognition

by components”
(Biederman, 87)

n Concavities important in
segmenting parts
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Recognition by Parts (Biederman, 87)

n Objects built from primitives
called “geons” (n = 36)

N Represent objects by
volumetric primitives
together with their relations

n Two key components of
decision:
g locating concavity
q deciding which edge

information remains invariant

across different viewing
angles (invariant properties
like curvature, parallelism,
etc.)

EDGE
EXTRACTION

N

PARSING OF
REGIONS OF
CONCAVITY

DETECTION OF
NON-ACCIDENTAL
PROPERTIES

AN /
N 4

DETERMINATION
OF COMPONENTS

:

MATCHING OF
COMPONENTS TO
OBJECT
REPRESENTATIONS




Recognition by Parts (Biederman, 87)

Nonaccidental features for each geon
that can be 1dentified 1n 1images
independent from viewpoint

2

View invariance a

.-’ ; "BRICKS"

(a, h,d) (b, e, g)(c,fi)
® 1 inner Y-vertex:
(ghi)
® 3 outer arrow vertices:
(afg) (bch) (dei)

e 3 sets of 3 parallel edges:

c
"CYLINDERS"

e 2 parallel straight edges:
(a,c)

® 2 parallel curved edges:
(d, e)

® 2 tangent Y-vertices:
(abe) (bce)
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Problems of RBC

n Structural description not enough, also need metric info
n Difficult to extract geons from real images

N Ambiguity in the structural description: most often we have
several candidates

n For some objects, deriving a structural representation can be
difficult

n Empirically there is view-dependence




Viewer centered models

Problem

n Very large number of views might have to be stored
per object

Solutions
n Alignment of stored and perceived view
n Generalization/interpolation between learned views




Canonical views

NAMING LATENCY (msec.)

850

800

750

700

650

Low Medium Medium High

Low  High
CANONICALNESS

BEST (1.60) SIDE (1.84) FRONT-SIDE (2.12)
= -
FRONT-SIDE-TOP (2.80) SIDE-TOP (3.48) FRONT (3.72)
3
|
BACK-SIDE (4.12) BACK-SIDE-TQOP (4.29) FRONT-TOP (4.80)
BACK-TOP (5.56) BACK (5.68) TOP (6.36)

Rated typicality of object views
(Palmer, Rosch and Chase 1981)
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Viewer centered models

N Three-Dimensional Models
q Recognition by alignment introduced by Ullman (1989)

n Two-Dimensional Models
g Ullman and Basri (1991)

n
n

No long restricted to rigid transformations

Does not involve the explicit reconstruction and representation of the
3D structure for the storing the objects

Prove that under certain assumptions, all the views of a 3D object can
be derived from the linear combination of a few 2D views

Presuppose a correspondence between features of the input image and
the model views

Require the visibility of all object points from every perspective
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Viewer centered models

n Two-Dimensional Models (cont)
q Poggio and Edelman (1990)

N An early implementation of a view based recognition system using an
artificial neural network

n Postulate that for every object an appropriate function can be found
which is capable of transforming all possible views into a single
standard view

n The approximations of these functions are expected to be evolved by
RBF networks (Radial Basis Functions)

n Require a constant number of feature points together with an exact
correspondence relation between image and model
q CLF network (Conjunctions of Localized Features) suggested by
Edelman and Weinshall (1991)

n Do not need the computation of an explicit correspondence but use
topological feature maps

SR
& v)\" 13
n



Viewer centered models

n Models Utilizing View Sequences

q VIEWNET architecture (View Information Encoded with
NETworks) described by Grossberg and Bradski (1995)

n Demonstrate the advantages resulting from the consideration of view
sequences instead of single images

n Include a biologically motivated preprocessing chain
n Still neglect the order in which the views appear

q Evaluation of view sequence by Seibert and Waxman (1992)
g Darrell and Pentland (1993)

n Use simple image processing algorithms

n Training and recognition require an alignment




‘ Psychophysical evidence (Bulthotf et al., 1994)

Biederman
Bulthoff, Edelman, Tarr, 1994

Subjects presented with realistically rendered images of
computer-generated 3D objects

Tight control of stimulus shapes, surface, illumination,
symmetry and viewpoint

Consistently observed viewpoint dependent
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Psychophysical evidence (Bulthoff et al., 1994)

Object Distractors
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‘ Biological evidence (Bulthoff et al., 1994)

Mean response time in familiar and unfamiliar viewpoints
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Biological evidence (Bulthoff et al., 1994)

n Object represented as a

collection of structurally stored / Zf \

specific views Input 0

n Input stimulus activates the

. . N N AN,

representation of that view \%ﬂ%ﬁ}& _
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RBF Units
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RBF networks
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Biological evidence (Bulthoff et al., 1994)

Performance of Human and RBF network
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Biological evidence (Bulthoff et al., 1994)

The Role of Viewpoint
Across Recognition Tasks

Viewpoint
Dependent

Viewpoint
Invariant

Viewpoint dependence most strongly demonstrated in
subordinate-level recognition

Extreme viewpoint dependence and extreme viewpoint
invariance lie at two ends of a contiuum, with appropriate
mechanisms and features

Question viewpoint invariant model even in entry-level

recognition
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‘ Utilizing temporal associations

-
-

Seibert and Waxman (1992)
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Summary on object centered models

n

Already involve a high degree of complexity in
representation

Recognition process is tedious

Only models of Lowe (1986) and Thompson and
Mundy (1987) were realized as functioning object
recognition systems

Implementation limited to relatively simple and
completely specified primitive objects
Applicability to real world remain questionable
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Summary on viewer centered models

n Can be built upon 2D instead of 3D views
n Closer relationship to biological findings

n Lead to successful technical implementations in
practice




Face perception

How does the brain understand and interpret faces
An important site for the identification of others
Convey significant social information

Early development
Innate tendency to pay attention to faces from birth

n Adult face perception

n
n
n
n

Questions

n Do we genuinely develop specific skills for
understanding faces or is it just part of a general skill
for making within-category discriminations?
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‘ Is face recognition special?

Why should it be special ?

 Inverted and wrong-color images very
difficult to recognize

 Stronger orientation dependence than for
other objects

* Seems to be more holistic

» Dissociations (object / face perception
deficits) 1n patients with localized lesions

* We have much more experience with
faces than with other objects.
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Thatcher illusion

Thompson (1980)
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‘ Response properties of human fusiform face area

3a. Faces > Objects 4a. Faces > Objects
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n FFA is a module in human extrastriate cortex
specialized for face perception (Kanwisher et al. 1997)
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Response properties of human fusiform face area

n Kanwisher et al. 1997

g low-level feature extraction

g allocation of attention to faces due to a general attentional
bias towards faces

g subordinate level recognition of category exemplars
g recognition of any animate (or perhaps only human) objects




Response properties of human fusiform face area

n Tong, Nakayama, Moscovitch, Weinrib, Kanwisher,
2000
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Holistic vs. Piecemeal

The whole is greater than the sum of its parts
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Latency of responses to faces suggests a
largely feed-forward computation

Superior Posterior
longitudinal "Where" parietal cortex
fasciculus

Inferior
longitudinal Inferior
fasciculus temporal cortex
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‘ Image-based face recognition system

Approach Representative Works

Holistic methods

Principal Component Analysis (PCA)

Eigenface Direct application of PCA
Fisherface/Subspace LDA FLD on eigenspace
SVM Two-class problem based on SVM
ICA ICA-based feature analysis
Other Representations
LDA/FLA FLD/LDA on raw images
PDBNN Probabilistic decision based NN
Feature based methods
Pure geometry methods Earlier methods, recent methods
Dynamic Link Architecture Graph matching methods
Convolution Neural Network SOM learning based CNN methods

Hybrid methods

Modular eigenface Eigenface & eigenmodules
Hybrid LFA Local & global feature method
Component-based Face region and components

Zhao, Chellappa, Rosenfeld and Phillips, 2003




‘ Question?
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Poggio & Edelman (1990)

Radial basis function (REF)
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View-based categorization, Edelman (1999)

n

n

Each category represented by
ensemble of views

New categories encoded by
distribution of activation over
prototypical neurons that
represent different categories

A Chorus of Prototypes
(modules tuned to reference shapes)

high-dimensional
measurement space

low-dimensional
representation space
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iological evidence (Bulthoff et al., 1994)

Szeinvariance Position invariance
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