

## Context-based Object RecognitionPutting context into vision

#### Phil Crosby and Zhe Lin

**CMSC 828J** 

May 04, 2006

#### Outline

- Introduction to context
- n Overview of Cognitive Science Literature
- n Matching words and images
- Statistical contextual priming
- n Contextual priors for object recognition
- n Other contextual models
- <sub>n</sub> Summary
- n References

#### **Definitions of Context**

- Any data or meta-data not directly produced by object of interest. Includes:
  - Neighbor-based context: Nearby image data
  - Scene-based context: Scene information
  - Object-based context: Presence, locations of other objects



#### Chun on Attention

- Attention must prioritize relevant information in the face of information overload
- Bold and flamboyant bottom-up cues can produce rapid search
- Chun argues normal scenes have too many bottom-up cues to be useful

#### Chun on Attention...

- Context dictates what should receive attention and what should be ignored
  - Lights while driving
- Context guides eye movements to the important parts of a scene, which are then fixated upon with foveal vision





- If context guides our attention, it basically facilitates a more efficient search
- Biederman's (1981) influential theory: schema representations for a scene specify the range of plausible objects that can occur, and their positioning relative to each other
- Schemas acquired rapidly, with a glance

#### Potential Benefits of Context

- n Eliminate ambiguity!
- Place constraints on the types of objects (Chun, Biederman)
  - Reduces computational complexity when searching memory for an identity match for a new object

#### Potential Benefits of Context...

- Focus attention, giving more perceptual processing to more relevant image areas
- Exploit redundancy and invariance in a scene.
  - Discard irrelevant or non-changing details
  - Increase predictability to save time

## Cognitive science studies on context

### What letter is this?

Н



TAE CAT

## Torralba – Face detection in impoverished images



A. Torralba, P. Sinha. (2001). **Detecting faces in impoverished images**. Al Memo 2001-028, CBCL Memo 208, November 2001.

## Torralba – Face detection in impoverished images

Same resolution, but trade details of face for contour of head



A. Torralba, P. Sinha. (2001). **Detecting faces in impoverished images**. Al Memo 2001-028, CBCL Memo 208, November 2001.

## Where is the fire hydrant?



Biederman, I. et al. (1982) Scene perception: detecting and judging objects undergoing relational variations. Cognit. Psychol. 14, 143-177

### I think I know that face...



Sinha, P. and Poggio, T. I think I know that face... Nature 384, 404

## Spatial contextual cueing





Chun, M.M. and Jiang, Y. (1998) Contextual cueing: implicit learning and memory of visual context guides spatial attention. *Cognit. Psychol.* 36, 28–71

## Object cueing





Chun, M.M. and Jiang, Y. (1999) Top-down attentional guidance based on implicit learning of visual covariation. *Psychol. Sci.* 10, 360–365



How do we explain the results of these studies?

Three hypotheses for human object identification in scenes:

# Perceptual Schema Model (Biederman's view)

- Expectations derived from knowledge about the composition of a scene type interact with the perceptual analysis of object tokens in that scene.
  - Facilitates perceptual analysis of sceneconsistent objects
  - Inhibits analysis of scene-inconsistent objects



- Recognition of a scene "primes" the memory associated with objects that should occur in that scene.
- Criterion for matching a visual observation to an object in memory is lower for object memories that are consistent with that scene



 Object identification is isolated from expectations derived from scene knowledge

#### Which model is accurate?

n Who knows?

Henderson & Hollingworth seem to find that the functional isolation model best describes how humans do object recognition

## Barnard et al – Matching words and Pictures



Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. 2003. Matching words and pictures. *J. Mach. Learn. Res.* 3 (March 2003), 1107-1135.

### Matching words and Pictures -Hierarchical model for annotation



Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. 2003. Matching words and pictures. *J. Mach. Learn. Res.* 3 (March 2003), 1107-1135.



### Matching words and Pictures -Hierarchical model for annotation

$$p(D|d) = \sum_{c} p(c) \prod_{w \in W} \left[ \sum_{l} p(w|l,c) p(l|d) \right]^{\frac{N_w}{N_{w,d}}} \prod_{b \in B} \left[ \sum_{l} p(b|l,c) p(l|d) \right]^{\frac{N_b}{N_{b,d}}}$$

$$p(w|B) \propto \sum_{c} p(c)p(w|c)p(B|c)$$

$$= \sum_{c} p(c) \left[ \sum_{l} p(w|l,c)p(l|c) \right] \prod_{b \in B} \left[ \sum_{l} p(b|l,c)p(l|c) \right]^{\frac{N_{b}}{N_{b,d}}}$$

Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. 2003. Matching words and pictures. *J. Mach. Learn. Res.* 3 (March 2003), 1107-1135.

# Matching words and Pictures - leveraging context

- Leverage clusters in the hierarchical model to help make clustering more accurate. Clusters are the context.
- Approach 1 linking word emission and region emission probabilities with mixture weights:

$$p(D|d) = \sum_{c} p(c) \prod_{w \in W} \left[ \sum_{l} p(w|l,c) p(l|B,c,d) \right]^{\frac{N_w}{N_{w,d}}} \prod_{b \in B} \left[ \sum_{l} p(b|l,c) p(l|d) \right]^{\frac{N_b}{N_{b,d}}},$$

where we stipulate that

$$p(l|B,c,d) \propto \sum_{b \in B} p(l|b,c,d).$$

# Matching words and Pictures - leveraging context

Approach 2 – paired word and region emission at nodes

$$p(D|d) = \sum_{c} p(c) \prod_{(w,b)\in D} \left[ \sum_{l} p((w,b)|l,c) p(l|d) \right]$$

$$p(w \Leftrightarrow b) \approx \sum_{c} p(c) \sum_{l} p((w,b)|l,c) p(l|d).$$

#### Some more results



Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. 2003. Matching words and pictures. *J. Mach. Learn. Res.* 3 (March 2003), 1107-1135.

# Traditional Approach to Object Detection

uses only local object properties

n Classify local image patches at each

location and scale.





$$\mathbf{V}_{\mathrm{L}} \longrightarrow \begin{bmatrix} \mathsf{Classifier} \\ \mathsf{p}(\ \mathsf{car} \mid \mathbf{V}_{\mathrm{L}}) \end{bmatrix} \longrightarrow \mathsf{no}\ \mathsf{car}$$



- n Ambiguity (e.g. low resolution)
- n Computational complexity



What's this?





With contextual information, you can tell what it is.

## Resolving Ambiguity



## Resolving Ambiguity



Identical local image features!

## Context – Reduces Search Space

- Context can provide a prior on what to look for, and where to look for it.
  - <sub>n</sub> Example
    - <sup>n</sup> Office à desk, chair, computers
    - n Outdoor à cars are usually on the road

# Context Features: Holistic Representation

- Spatial layout of spectral components
  - Responses of filters with different scales and orientations to image
  - <sub>n</sub> Filter examples
    - <sup>n</sup> Steerable Pyramid (Torralba et al., 2003)
    - Weighted Fourier Transform (Torralba & Sinha 2001)
    - Gabor filter banks (Torralba 2003)
  - PCA dimensionality reduction

#### Context Features







$$v(x,k) \cong \sum_{n=1}^{D} a_n \cdot \psi_n(x,k)$$
**PCA**

$$\psi_1(x,k)$$
  $\psi_2(x,k)$   $\psi_3(x,k)$ 

Context features:

$$v^C = [a_{1\sim N}]$$

### Statistical Context Priming

- Context can be a rich source of information about object's identity, location and scale.
- Statistical framework for modeling the relationship between context and object properties.

### Statistical Context Priming

We are interested in  $P(\vec{p}, \sigma, \vec{x}, o_n | \vec{v})$ 

Local evidence  $P_l(\vec{p}, \sigma, \vec{x}, o_n \mid \vec{v}_L)$ 

Context priming  $P_c(\vec{p}, \sigma, \vec{x}, o_n \mid \vec{v}_C)$ 

$$P_{c}(\vec{p}, \sigma, \vec{x}, o_{n} \mid \vec{v}_{C}) = P_{p}(\vec{p} \mid \sigma, \vec{x}, o_{n}, \vec{v}_{C}) P_{s}(\sigma \mid \vec{x}, o_{n}, \vec{v}_{C}) P_{f}(\vec{x} \mid o_{n}, \vec{v}_{C}) P_{o}(o_{n} \mid \vec{v}_{C})$$

Pose and Shape Priming

Scale Selection Focus of Attention

Object Priming

### **Object Priming**

- n Annotated database for learning
- Learning by MOG

$$P(o / \mathbf{v}_C) = \frac{P(\mathbf{v}_C / o)P(o)}{P(\mathbf{v}_C)}$$

$$P(\mathbf{v}_C) = P(\mathbf{v}_C/o)P(o) + P(\mathbf{v}_C/\neg o)P(\neg o)$$

$$P(\mathbf{v}_C/o) = \sum_{i=1}^{M} b_i \cdot G(\mathbf{v}_C; \mu_i, \Sigma_i) \qquad P(\mathbf{v}_C/\neg o) = \sum_{i=1}^{M} b_i \cdot G(\mathbf{v}_C; \mu_i, \Sigma_i)$$

Model parameters  $(b_i, \mu_i, \Sigma_i)_{i=1,M}$  are learned from **EM algorithm**.

A. Torralba, "Contextual priming for object detection," IJCV 2003.

# Object Priming Result



Figure 7. Random selection of images from the test set showing the results of object priming for four superordinate object categories  $(o_1 = \text{people}, o_2 = \text{furniture}, o_3 = \text{vehicles} \text{ and } o_4 = \text{trees})$ . The bars at the right-hand of each picture represent the probability  $P(o \mid \mathbf{v}_C)$ .

# Object Priming Result



Fig. 8. Random selection of images from the test set organized with respect to the probability  $P(o | \mathbf{v}_C)$  for o = people and furniture.

#### Context and Task-driven FOA

#### n Model: Gaussian Mixture Model

$$P(\mathbf{x} \mid o, \mathbf{v}_C) = \frac{\sum_{i=1}^{M} b_i G(\mathbf{x}; \mathbf{x}_i, \mathbf{X}_i) G(\mathbf{v}_C; \mathbf{v}_i, \mathbf{V}_i)}{\sum_{i=1}^{M} b_i G(\mathbf{v}_C; \mathbf{v}_i, \mathbf{V}_i)} \quad \mathbf{x}_i = \mathbf{a}_i + \mathbf{A}_i (\mathbf{v}_C - \mathbf{v}_i)$$

$$(\bar{x}, \bar{y}) = \int \mathbf{x} P(\mathbf{x} \mid o, \mathbf{v}_C) d\mathbf{x}$$

$$= \frac{\sum_{i=1}^{M} b_i \mathbf{x}_i G(\mathbf{v}_C; \mathbf{v}_i, \mathbf{V}_i)}{\sum_{i=1}^{M} b_i G(\mathbf{v}_C; \mathbf{v}_i, \mathbf{V}_i)} \quad \sigma_r^2 = \int r^2 P(\mathbf{x} \mid o, \mathbf{v}_C) d\mathbf{x}$$

#### n Model learning by EM

$$(b_i, a_i, \mathbf{A}_i, \mathbf{X}_i, \mathbf{v}_i, \mathbf{V}_i)_{i=1,M}$$

#### Context and Task-driven FOA



Fig. 14. Focus of attention based on global context configuration. Each pair shows the original image and the image multiplied by the function  $P(\mathbf{x} | \mathbf{v}_C, o = heads)$  to illustrate the primed regions.

#### Context-driven Scale Selection

#### n Model (GMM)

$$P(\sigma \mid o, \mathbf{v}_{C}) = \frac{\sum_{i=1}^{M} b_{i} G(\sigma; \sigma_{i}, \mathbf{S}_{i}) G(\mathbf{v}_{C}; \mathbf{v}_{i}, \mathbf{V}_{i})}{\sum_{i=1}^{M} b_{i} G(\mathbf{v}_{C}; \mathbf{v}_{i}, \mathbf{V}_{i})} \quad \sigma_{i} = a_{i} + \mathbf{A}_{i}(\mathbf{v}_{C} - \mathbf{v}_{i})$$

$$\bar{\sigma} = \int \sigma P(\sigma \mid o, \mathbf{v}_{C}) d\sigma = \frac{\sum_{i=1}^{M} \sigma_{i} b_{i} G(\mathbf{v}_{C}; \mathbf{v}_{i}, \mathbf{V}_{i})}{\sum_{i=1}^{M} b_{i} G(\mathbf{v}_{C}; \mathbf{v}_{i}, \mathbf{V}_{i})}$$

$$\sigma_{h}^{2} = \int (\sigma - \bar{\sigma})^{2} P(\sigma \mid o, \mathbf{v}_{C}) d\sigma$$

#### n Model Learning by EM

$$(b_i, a_i, \mathbf{A}_i, \mathbf{S}_i, \mathbf{v}_i, \mathbf{V}_i)_{i=1,M}$$

#### Context-Driven Scale Selection



Fig. 19. Results for scale selection given global context information for rando



Fig. 22. Each row shows a set of 8 pictures sorted according to the predicted size of human heads (top) and cars (bottom). Torralba, "Contextual priming for object detection," IJCV 2003.

# Context-based Place and Object Recognition

#### <sub>n</sub> Testbed

- Mearable device: helmet-mounted mobile system
- n Place and Scene Recognition
  - Global features + PCA
  - n Wearable test-bed
  - Model of place recognition HMM
- object Recognition
  - Individual object recognition using contextual information



- Place: Instance of a scene category
  - <sub>n</sub> E.g. office 610, main street
- Scene category: type of place
  - <sub>n</sub> E.g. office, street

### System Framework



A. Torralba et al., "Context-based vision system for place and object recognition," ICCV 2003.

# Low-dimensional Scene Representation

- Compute image intensity (no color)
- Steerable pyramid (6 orientations, 4 scales)
- Compute magnitude of average filter responses
- Downsample to 4 x 4₺ 384 dimensions
- PCA to 80 dimensions

# Global Feature (Interpretation)



A. Torralba et al., "Context-based vision system for place and object recognition," ICCV 2003.

# Visualizing the Global Features

Images

Gist: 80-dim Representation



A. Torralba et al., "Context-based vision system for place and object recognition," ICCV 2003.

### Models for Place Recognition

Transition model: HMM

$$\begin{split} P(Q_t = q | v_{1:t}^G) &\propto p(v_t^G | Q_t = q) P(Q_t = q | v_{1:t-1}^G) \\ &= p(v_t^G | Q_t = q) \sum_{q'} A(q', q) P(Q_{t-1} = q' | v_{1:t-1}^G) \end{split}$$

$$A(q',q) = P(Q_t = q|Q_{t-1} = q')$$

- n Observation model  $p(v_t^G|Q_t)$ 
  - Mixture of Gaussian (100views/Places)

### Recognition Performance



# Contextual Priming for Object Detection

Object properties

$$\vec{O}_t = (O_{t,1}, \dots, O_{t,N_o})$$

Object priming using context ONLY

$$P(O_{t,i}|v_t^G, Q_t = q) = \frac{p(v_t^G|O_{t,i}, j)P(O_{t,i}|q)}{p(v_t^G|O_{t,i}, q)P(O_{t,i}|q) + p(v_t^G|\bar{O}_{t,i}, q)P(\bar{O}_{t,i}|q)}$$

### Predicting Object Presence



A. Torralba et al., "Context-based vision system for place and object recognition," ICCV 2003.

# Contextual Priors for Object Localization

- n Goal:  $P(X_{t,i}|v_t^G, O_{t,i} = 1)$
- n Approach:
  - Divide images into 8\*10 binary masks

$$E[M_{t,i}|v_{1:t}^G] = \sum_{o \in \{0,1\}} \sum_{q} P(O_{t,i} = o, Q_t = q|v_{1:t}^G)$$
$$\times E[M_{t,i}|v_t^G, Q_t = q, O_{t,i} = o]$$

Likelihood is weighted sum of prototypes

$$E[M_{t,i}|v_t^G] = \sum_{q} \sum_{k} w_{k,i,q} \times \mu_{k,i,q}^m$$

# Results for Object Localization



#### Other Models of Context

- Using forest to see the trees: graphical model, K. Murphy 2003.
- Boosted random field, K. Murphy 2004.

### Summary

- We introduced basic concepts of context and its role in human visual perception.
- We also discussed some recent probabilistic approaches to application of context in computer vision.
  - Matching words and pictures
  - Statistical context priming for object recognition
- Context is important in object recognition, especially when visibility of object appearance is low. It reduces ambiguity, search space, and also make a complementary role to the local approach.

#### References

- Antonio Torralba and Pawan Sinha, "Statistical context priming for object detection," ICCV 2001.
- Antonio Torralba, "Contextual priming for object detection," IJCV 2003.
- Antonio Torralba et al., "Context-based vision system for place and object recognition," ICCV 2003.
- Kevin Murphy et al., "Using the forest to see the trees: a graphical model relating features, objects, and scenes," NIPS 2003.

# Graphical Model Relating Features, Objects, and Scenes

- Combining local, bottom-up information with global, top-down information using a graphical model
  - Boosting-based object detection
  - Scene learning and classification
  - <sub>n</sub> Joint classification and detection

# Filters and Spatial Templates

### **Examples of Learned Features**

# Some features after 100 rounds of boosting



# Tree-structured Graphical Model for Joint Classification and Detection

Use global context to predict presence and location of objects



# Backup Slides

# Steerable Pyramid



#### Weighted Fourier Transform

#### n WFT

$$I(x, y, f_x, f_y) = \sum_{x', y'=0}^{N-1} i(x', y') h_r(x' - x, y' - y) e^{-j 2\pi (f_x x' + f_y y')}$$

$$A(x, y, f_x, f_y) = \frac{|I(x, y, f_x, f_y)|}{I(x, y, 0, 0) \operatorname{std}(x, y, f_x, f_y)}$$
 Normalization

$$A(x,y,f_x,f_y)\simeq\sum_{n=1}^N a_n\psi_n(x,y,f_x,f_y)$$
 PCA with N=60 PCs

$$\vec{v}_C = \{a_n\}_{n=1,N} \longrightarrow \text{Context features}$$

#### Gabor Filter Bank

#### n Gabor filter bank



$$v(x,k) = \left| \sum_{x'} I(x') g_k(x-x') \right|$$

Magnitude of averaged filter output

$$g_k(x) = g_0 \cdot e^{-\frac{\|x\|^2}{\sigma_k^2}} \cdot e^{2\pi i < f_k, x>}$$

Gabor (oriented band-pass) filters