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Texture Characterization - Traditional models

e Julesz hypothesis

e Nth-order empirical densities of image pixels

e Markov Random Fields

e Statistical interactions within local neighborhood

e [inear kernels

e Multiple orientations and scales.
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Contributions of this paper : What’s new 7

e Universal(?) parametric model for visual texture

e Overcomplete multi-scale complex wavelet representation

o Markov statistical descriptors : pairs of wavelet coefficients at adjacent spatial

locations, orientations and scales

e Novel method for sampling from this model

e Iterative projection onto sets

e Revisit Julesz conjecture
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How do we represent a texture 7

e A random field

e X(n,m) on a finite lattice (n, m)

o A set of constraint functions {¢r(X), k= 1...N.}, such that

E(Pr(X)) = E(Px(Y)), Vk

= samples of X and Y are perceptually equivalent

> Universal ?

> What about the reverse ?
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Testing a Representation/Model

e Julesz Conjecture

e Perceptual equivalence 7

e Individual images versus Statistics of REs 7

> Requires ergodicity.

e Proposed synthesis-by-analysis approach

e Practical ergodicity is enough

Px(|p(x(n,m)) — E(G(X))| <€) 2 p
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The Complete Framework requires

e a real two-dimensional homogeneous random field

e candidate constraint functions

e a method for estimating statistical paramaters

e an algorithm for sampling a RF satistfying the statistical constraints

e a method for measuring percptual similarity of two texture images.
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Random fields from Statistical Constraints

e Density with maximum entropy

e Optimal - no other constraints imposed

e Difficult to compute

e Alternative

e Sampling from "Julesz Ensemble"

T- .= {f ¢k(f) = ck,Vk}

e Equivalent to maximal entropy distribution as lattice size grows to infinity
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Sampling via Projection

e Assuming X is a homogeneous RF, and

. L
Pie R = T5

we can get
Xt = pgg’,g(XO)
e Choice of X

> That maximizes the entropy of X; - equally diflicult

> High-entropy distribution for X - Gaussian white noise
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Projection onto Constraint Surfaces

e Difficult to construct a single Pz z

e Alternative : an iterative solution

e Set of functions
pi : RIFN— T3,

where

Tk = {a’:’ gbk(f) = Ck}
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How do we project 7

e (Gradient Projection
T =&+ \Vou(T)

where Ap i1s chosen such that

or(Z') = ¢y
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Texture Model

e Constraint functions 77

e On pixel values / some other basis

> Biological motivation - localized oriented bandpass linear filters

> Steerable pyramid

L
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Statistical Constraints - Perceptual Criteria

e Following approach used to incrementally augment the set of constraint

functions

e Initialization - some basic parameters
e (Gather synthesis failure

e New statistical constraint

e Verify that the new constraint works !

e Verity that the old constraints are still necessary
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Constraints used : Marginal Statistics

e Normalized moments, range of the lowpass images computed at each level
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Figure 3. Necessity of marginal constraints. Left column: original
texture images. Middle: Images synthesized using full constraint set.
Right: Images synthesized using all but the marginal constraints.
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Constraints used : Coefficient Correlation
e Local auto-correlation of the lowpass images computed at each level
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umn: original texture images. Middle: Images synthesized using full
constraint set. Right: Images synthesized using all but the autocor-

relation constraints.

Figure 4. Necessity of raw autocorrelation constraints. Left col-
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Constraints used : Magnitude Correlation

e Correlation of complex magnitude of pairs of coefficeints at adjacent po-

sitions, orientations and scales
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e Normalized magnitude responses

Normalized magnitude responses of the steerable pyra-

Figure 5.

mid subbands for two example textures images (shown at left).
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e Necessary 7
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Figure 6. Necessity of magnitude correlation constraints. Left col-
umn: original texture images. Middle: Images synthesized using full
constraint set. Right: Images synthesized using all but the magnitude
auto- and cross-correlation constraints.
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Constraints used : Cross-Scale Phase Statistics

e Cross-correlation of the real part of the coeflicients with both the real

and imaginary part

e Fdges/lines dilemma ?
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e Necessary 7

gaurav aggarwal, umd

Figure 8. Necessity of cross-scale phase constraints. Left column:
original texture images. Middle: Images synthesized using full con-

straint set. Right: Images synthesized using all but the cross-scale
phase constraints.
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How good is the synthesis 7

e On classic counterexamples of Julesz conjecture :
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Figure 13.  Synthesis of classic counterexamples to the Julesz con-
jecture (Julesz et al., 1978; Yellot, 1993) (see text). Top row: original
artificial textures. Bottom row: Synthesized textures.

gaurav aggarwal, umd



Fallures:
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Figure 18. Artificial textures illustrating failure to synthesize cer-
tain texture attributes. See text.
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e On interesting "non"-textures:

Figure 17. Synthesis results on inhomogeneous photographic im-
ages not usually considered to be “texture”.
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