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Hidden Markov Models

• Generative, rather than descriptive model.
– Objects produced by random process.

• Dependencies in process, some random 
events influence others.
– Time is most natural metaphor here.

• Simplest, most tractable model of 
dependencies is Markov.

• Lecture based on: Rabiner, “A Tutorial on 
Hidden Markov Models and Selected 
Applications in Speech Recognition.”

Markov Chain

• States: S1, … SN

• Discrete time steps, 1, 2, …
• State at time t is qt.
• Initial state, q1.  pii = P(q1 = Si).
• P(qt = Sj | qt-1= Si, qt-2=Sk, … )

=  P(qt = Sj | qt-1 = Si).
This is what makes it Markov.

• Time independence: 
aij = P(qt = Sj | qt-1 = Si).
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Examples

• 1D random walk in finite space.
• 1D curve generated by random walk in 

orientation.

States of Markov Chain

• Represent state at time t as vector:
w(t) = (P(qt=S1), P(qt=S2), … P(qt=SN)
• Put transitions, aij into matrix A.

– A is Stochastic, meaning columns sum to 1.

• Then w(t) = AT*w(t-1).
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Asymptotic behavior of 
Markov Chain

• w(n) = AT (AT(…(AT(w(1))))) = ATn(w(1)).
– w(n) will be leading eigenvector of AT.

• This means asymptotic behavior independent 
of initial conditions

• Some special conditions required:  
– Reach every state from every state (ergodic).

– Markov chain may not converge (periodic)

Hidden Markov Model

• Observations, v1, … vM
– We never know the state, but at each time 

step a state produces an observation.

• Observation distribution: 
bj(k) = P(vk at t| qt = Sj).
Note this is also taken to be time independent.

• Example, HMM that generates contours 
varying from smooth to rough.
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Three problems
• Probability of observations given model.

– Use to select model given observations (eg, 
speech recognition).

– To refine estimate of HMM.
• Given model and observations, what were likely 

states?
– States may have semantics (rough/smooth 

contour).
– May provide intuitions about model.
– However, this is often least useful problem.

• Find model to optimize probability of observations.
– Learning the model.

Probability of Observations

• Solved with dynamic programming.
• Whiteboard (see Rabiner for notes).
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Problem 1: Probability of observations given model: P(O | lambda).

Basic idea: we can do this with dynamic programming.  This is basically 
inductive.  Suppose we know the probability of producing the first t 
symbols and winding up in state i at time t, for all values of i.  Then we 
want to use that to compute the same thing for t+1.  The key thing is that 
to figure this out for time t+1 we just need to know if for time t.  In 
particular, it won’t matter what states we were in for time < t, just what 
states we were in at t.

Specifically, (abbreviate \alpha = \a) we define:

\a_t(i) = P(O_1, … O_t, q_t = S_i | \lambda)

1) Initialize: \a_1(i) = \pi_i b_i(O_1)

2) Recurse: \a_{t+1}(j) = [sum_{i=1}^N \a_t(i) a_{ij}] b_j(O_{t+1})

3) Termination: P(O|lambda) = sum_{i=1}^N \a_T(i)

Problem 2: Maximum likelihood sequence of internal states given model and 
observations.  This is the same as (1), except we use maximum instead 
of sum, and keep backward pointers.

Problem 3: Estimating a model, given a sequence (or many of them).  
Formally: argmax_lambda P(O | lambda).  Note that we are assuming we 
know the number of states (more states would always allow a better fit).

We approach this with an iterative algorithm.  We assume some starting 
point, then improve it.  Given a model, we estimate the sample probability 
of every parameter.  Then we adjust the model to use each sample
probability as the true one.  For example, we estimate the probability that 
we begin in state 1, given the model AND the observations.  Then we use 
this as the new prior probability that we will start in state 1. We do this for 
every aspect of the model.

The key to computing these sample probabilities is to figure out the 
probability that we will be in state i at time t, and the probability that we 
will move from state i at time t to state j at time t+1.  It is important to note 
that we can’t just use \a to determine this.  This is because the probability 
that we will be in state i at time t doesn’t just depend on the probability of 
emitting the first t symbols and winding up in state i after time t.  It also 
depends on the chances that we will continue on from state i to emit all 
the rest of the symbols.  For example, it is possible that from state i you 
almost never go to a state that will emit the next symbol you need.
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So we define a similar quantity that says how likely we are to continue on a 
produce the rest of the symbols (using \B for \Beta):

\B_t(i) = P(O_{t+1}, … O_T | q_t = S_i, lambda)

This can be computed using dynamic programming in a way similar to \a.

1) Initialize: \B_T(i) = 1.  This is because there are no further observations to 
account for.

2) Induction: \B_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1})\B_{t+1}(j)

That is, the probability that we’ll produce all future observations if we’re in state i 
at time t is the sum over all j’s of the probability that we’ll go to that j, 
produce the right next observation, and then produce all subsequent 
observations.

Using this, we can determine \g_t(i), the probability we’re in state i at time t.

\g_t(i) = \a_t(i)\b_t(i)/P(O|lambda).  Numerator is the probability we generate the 
observations while passing through state i at time t.  

The denominator can be written by summing the expression in the numerator 
over all i.  

Then we can determine the probability that we transition from one state to 
another at a particular time, given the observations:

\T_t(i,j) = \a_t(i) a_{ij} b_j(O_{t+1})\B_{t+1}(j)/P(O|lambda).

Using these, we can compute what we need.  Take the sample value of 
a_{ij}.  This is the sample probability we go from state i to state j.  To do this, 
we can sum over all times, to find the expected number of times we go from 
state i to state j, and divide this by the expected number of times we are in 
state i.  The initial distribution is just the expected number of times we are in 
state i at time 1.  The sample distribution of b_j(k) is the expected number of 
times we’re in state j in those times at which symbol k was observed, divided 
by the expected number of times we were in state k.

Note that we haven’t proven that this iteration really improves the model, and 
that it converges, but these things are true, and kind of intuitive.
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Practical Applications

• Continuous to discrete
– Discretize observations with codebook.

Graphical Models

• Represent conditional dependencies with a 
graph.

• Each variable is a node
• Two nodes are connected if they are directly 

dependent.
• Two variables, X1 and X2, are conditionally 

independent, given knowledge of other 
variables, iff removing the nodes of the other 
variables disconnects X1 and X2.
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Example

X1 X2 X3

X4

This graph represents the relationship that given V2, 
V1 is conditionally independent of V3 and V4.

E.g., P(V1|V2,V3,V4) = P(V1|V2)

HMM

q1 q2 q3 q4

V1 V2 V3 V4

We perform inference with knowledge of conditional 
probabilities (the model) and of some variables (V1, 
V2…)
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Belief Nets

• We add directions to edges, indicating 
causation.

Alarm

Burglar Earthquake

In this classic example, the alarm might be set off 
by a burglar or an earthquake.  

Knowing whether the alarm went off doesn’t make 
earthquake and burglar conditionally independent.

(e.g., if the alarm goes off, learning that there was 
an earthquake makes me much less worried about 
burglars).
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Belief Propagation

• Like inference in an HMM, but can handle 
directed edges, and general DAGs.

• Still the basic idea is the same, to combine 
information from forward and backward 
directions (or maybe more than two 
independent directions).

• In general, lack of cycles allows us to use 
dynamic programming.

General Graphical models

• Model must include joint distribution of all variables 
that form cliques.

• We can compress a clique into a single variable, with 
states that give the cross-product of all states of 
individual variables.
– If doing this produces a DAG, we can perform inference 

using dynamic programming.
– Kfan is a graphical model with a single clique, and all other 

variables directly connected to this.

• Inference in general is NP-hard, but there is much 
work on effective algorithms for this problem.


