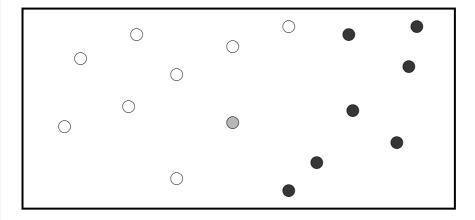
Announcements

- See Chapter 5 of Duda, Hart, and Stork.
- Tutorial by Burge linked to on web page.

Supervised Learning

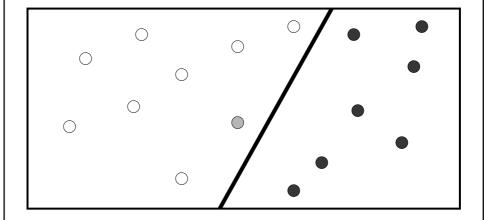
- Classification with labeled examples.
- Images → vectors in high-D space.



Supervised Learning

- Labeled examples called *training* set.
- Query examples called test set.
- Training and test set must come from same distribution.

Linearly Separable Classes



Linear Discriminants

- Images represented as vectors, x₁, x₂,
 - These could be pixels
 - But could also be any features
- Use these to find hyperplane defined by vector w and w₀.
- \mathbf{x} is on hyperplane: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0 = 0$.
- Notation: $\mathbf{a}^{\mathsf{T}} = [w_0, w_1, ...]. \ y^{\mathsf{T}} = [1, x_1, x_2, ...]$ So hyperplane is $\mathbf{a}^{\mathsf{T}} \mathbf{y} = 0$.
- A query, q, is classified based on whether $\mathbf{a}^{\mathsf{T}}q > 0$ or $\mathbf{a}^{\mathsf{T}}q < 0$.

Why linear discriminants?

- Optimal if classes are Gaussian with same covariances.
- · Linear separators easier to find.
- Hyperplanes have few parameters, prevents overfitting.
 - Have low VC dimension.
- Linear may seem like a big limitation
 - But it's not if the features are complex enough

Example

- XOR. An object is a 2D binary vector (x,y).
- Class is xor(x,y) (ie., (1,0) & (0,1)).
- Not linearly separable in (x,y) space.
- But is linearly separable in (x,y,x*x,y*y,x*y) space
 -x*x + y*y - 2*x*y > 0

Example: Naïve Bayes

- Assume all features are independent.
- Build optimal Bayesian classifier.
- For binary features, two classes, this produces a linear classifier.

$$P(\boldsymbol{\omega}_{1} \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid \boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{1})}{P(\mathbf{x})} = \frac{P(\mathbf{x} \mid \boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{1})}{P(\mathbf{x} \mid \boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{1}) + P(\mathbf{x} \mid \boldsymbol{\omega}_{2})P(\boldsymbol{\omega}_{2})}$$

$$Choose \, \boldsymbol{\omega}_{1} \text{ when } : \frac{P(\mathbf{x} \mid \boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{1})}{P(\mathbf{x} \mid \boldsymbol{\omega}_{2})P(\boldsymbol{\omega}_{2})} > 1$$

$$Independence \rightarrow P(\mathbf{x} \mid \boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{2}) = \prod_{i=1}^{d} P(x_{i} \mid \boldsymbol{\omega}_{j})$$

$$Define : p_{i} = P(x_{i} = 1 \mid \boldsymbol{\omega}_{1}) \quad q_{i} = P(x_{i} = 1 \mid \boldsymbol{\omega}_{2})$$

$$\frac{P(\mathbf{x} \mid \boldsymbol{\omega}_{1})P(\boldsymbol{\omega}_{1})}{P(\mathbf{x} \mid \boldsymbol{\omega}_{2})P(\boldsymbol{\omega}_{2})} = \prod_{i=1}^{d} \left(\frac{p_{i}}{q_{i}}\right)^{x_{i}} \left(\frac{1-p_{i}}{1-q_{i}}\right)^{1-x_{i}} \frac{P(\boldsymbol{\omega}_{1})}{P(\boldsymbol{\omega}_{2})}$$

$$Choose \, \boldsymbol{\omega}_{1} : \sum_{i=1}^{d} x_{i} \ln \frac{p_{i}}{q_{i}} + (1-x_{i}) \ln \frac{1-p_{i}}{1-q_{i}} + \ln \frac{P(\boldsymbol{\omega}_{1})}{P(\boldsymbol{\omega}_{2})} > 0$$

Linearly Separable Classes

- For one set of classes, a^Ty > 0. For other set: a^Ty < 0.
- Notationally convenient if, for second class, make **y** negative.
- Then, finding a linear separator means finding a such that, for all i,

 $\mathbf{a}^{\mathsf{T}}\mathbf{y} > 0.$

- Note, this is a linear program.
 - Problem convex, so descent algorithms converge to global optimum.

Perceptron Algorithm

Perceptron Error Function $J_{p}(a) = \sum_{y \in Y} (-a^{T}y)$

Y is set of misclassified vectors.

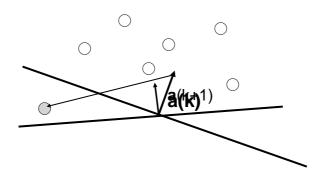
 $\nabla J_{_{_{P}}} = \sum\limits_{\mathbf{y} \in Y} (-\mathbf{y})$ So update **a** by:

$$a(k+1) = a(k) + \eta \sum_{y \in Y} y$$

Simplify by cycling through y and whenever one is misclassified, update $a \ \ a + cy$.

This converges after finite # of steps.

Perceptron Intuition



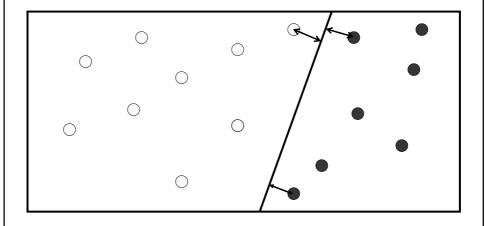
Support Vector Machines

- Find linear separator with maximum margin.
 - Some guarantees this generalizes well.
- Can work in high-dimensional space without overfitting.
 - Nonlinear map to high-dim. space, then find linear separator.
 - Special tricks allow efficiency in ridiculously high dimensional spaces.
- Can handle non-separable classes also.
 - Not as important if space very high-dimensional.

Maximum Margin

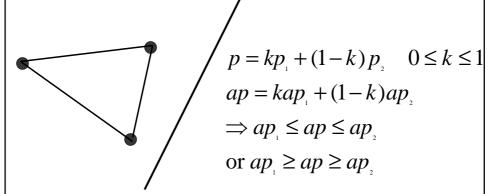
Maximize the minimum distance from hyperplane to points.

Points at this minimum distance are support vectors.

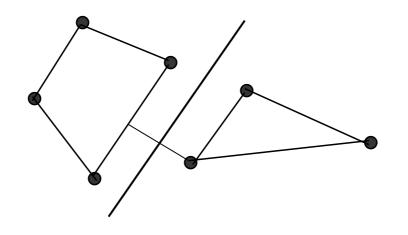


Geometric Intuitions

 Maximum margin between points -> Maximum margin between convex sets



This implies max margin hyperplane is orthogonal to vector connecting nearest points of convex sets, and halfway between.

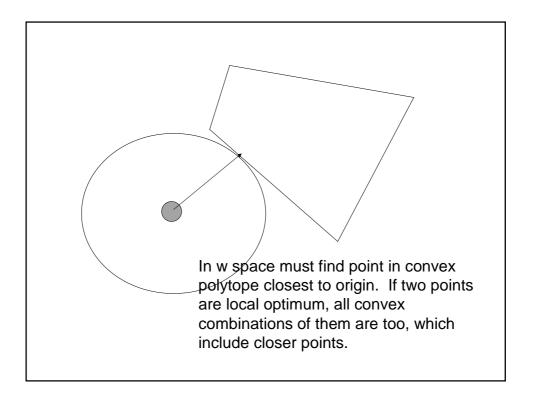


Why is max margin good?

- Intuitively best for noisy data.
- Guarantees good results in leave-oneout classification if #support vectors small.
 - If you leave out non-support vector, get same hyperplane, and correct classification
- Intuitively related to Fisher LDA.

Computation: Finding max margin classifier is convex

- Find w and b such that:
 - -wx + b >= 1 for one class
 - $-wx + b \le 1$ for other.
- Margin is 1/||w||.
- So minimize <w,w> subject to linear constraints.
- This is a convex optimization problem.



Fast computation in high dimensional spaces

- w is linear combination of support vectors.
- To compute wx + b need inner products of x and support vectors.
- Use kernels in which inner products for high dimensional space computed in low dimensional space.

Example: monomial kernels

$$\langle x, z \rangle^2 = \left(\sum x_i z_i\right)^2 = \left(\sum x_i z_i\right) \left(\sum x_j z_j\right)$$
$$= \sum \sum x_i x_j z_i z_j = \sum (x_i x_j) (z_i z_j)$$

This is equivalent to the inner product of vectors:

$$(x_1x_1, x_1x_2, ..., x_nx_n)$$

SVM Summary

- Max margin is good, and efficiently computed
- Kernel method allows computations in ridiculously high dimensional spaces
- Combination is what's important.
 - Arbitrary linear separator won't generalize well.
 - Max margin can generalize in high d space.

Non-statistical learning

- There are a class of functions that could label the data.
- Our goal is to select the correct function, with as little information as possible.
- Don't think of data coming from a class described by probability distributions.
- Look at worst-case performance.
 - This is CS'ey approach.
 - In statistical model, worst case not meaningful.

On-Line Learning

- Let X be a set of objects (eg., vectors in a high-dimensional space).
- Let C be a class of possible classifying functions (eg., hyperplanes).
 - $f in C: X -> \{0,1\}$
 - One of these correctly classifies all data.
- The learner is asked to classify an item in X, then told the correct class.
- Eventually, learner determines correct f.
 - Measure number of mistakes made.
 - Worst case bound for learning strategy.

VC Dimension

- S, a subset of X, is shattered by C if, for any U, a subset of S, there exists f in C such that f is 1 on U and 0 on S-U.
- The *VC Dimension* of C is the size of the largest set shattered by C.

VC Dimension and worst case learning

- Any learning strategy makes at least VCdim(C) mistakes in the worst case.
 - If S is shattered by C
 - Then for any assignment of values to S, there is an f in C that makes this assignment.
 - So any set of choices the learner makes for S can be entirely wrong.
- Alternately, sets of C exist where no generalization possible based on C-1 examples.

VC Dimension and SVMs

- VC dimension depends on number of support vectors.
- Example: suppose 2 support vectors
 - For n points, at most n*n classes.
 - To shatter points, must have 2ⁿ classes.
 - VC dimension < 5.
 - This does not depend on dimension of space.
- Similarly for k support vectors