Lighting affects appearance
How do we represent light? (1)

- Ideal distant point source:
 - No cast shadows
 - Light distant
 - Three parameters
 - Example: lab with controlled light
How do we represent light? (2)

- Environment map: $I(\theta,\phi)$
 - Light from all directions
 - Diffuse or point sources
 - Still distant
 - Still no cast shadows.
 - Example: outdoors (sky and sun)
Lambertian + Point Source

\[\vec{l} = l \cdot \vec{l} \]

- \(\vec{l} \) is direction of light
- \(l \) is intensity of light

\[i = \max(0, \lambda(\vec{l} \cdot \hat{n})) \]

- \(i \) is radiance
- \(\lambda \) is albedo
- \(\hat{n} \) is surface normal

\(\theta \)
Lambertian, point sources, no shadows. (Shashua, Moses)

- Whiteboard
- Solution linear
- Linear ambiguity in recovering scaled normals
- Lighting not known.
- Recognition by linear combinations.
Linear basis for lighting

λZ

λX

λY
A brief Detour: Fourier Transform, the other linear basis

- Analytic geometry gives a coordinate system for describing geometric objects.
- Fourier transform gives a coordinate system for functions.
Basis

- $P=(x,y)$ means $P = x(1,0)+y(0,1)$
- Similarly:

$$f(\theta) = a_{11} \cos(\theta) + a_{12} \sin(\theta)$$
$$+ a_{21} \cos(2\theta) + a_{22} \sin(2\theta) + \ldots$$

Note, I’m showing non-standard basis, these are from basis using complex functions.
Example

\[\forall c, \exists a_1, a_2 \text{ such that: } \]
\[\cos(\theta + c) = a_1 \cos \theta + a_2 \sin \theta \]
Orthonormal Basis

- $\|(1,0)\| = \|(0,1)\| = 1$
- $(1,0).(0,1) = 0$
- Similarly we use normal basis elements eg:
 \[
 \begin{align*}
 \frac{\cos(\theta)}{\|\cos(\theta)\|} & \quad \|\cos(\theta)\| = \sqrt{\int_0^{2\pi} \cos^2 \theta \, d\theta} \\
 \int_0^{2\pi} \cos \theta \sin \theta \, d\theta & = 0
 \end{align*}
 \]
- While, eg:
2D Example
Convolution

\[f(x) = g * h = \int g(x - x_0) h(x_0) \, dx_0 \]

Imagine that we generate a point in \(f \) by centering \(h \) over the corresponding point in \(g \), then multiplying \(g \) and \(h \) together, and integrating.
Convolution Theorem

\[f \otimes g = T^{-1} F \ast G \]

- \(F, G \) are transform of \(f, g \)

That is, \(F \) contains coefficients, when we write \(f \) as linear combinations of harmonic basis.
Examples

\[
\cos \theta \otimes \cos \theta = ?
\]

\[
\cos \theta \otimes \cos 2\theta = ?
\]

\[
\cos \theta \otimes f = ?
\]

\[
(\cos \theta + 0.2 \cos 2\theta + 0.1 \cos 3\theta) \otimes f = ?
\]

Low-pass filter removes low frequencies from signal. Hi-pass filter removes high frequencies. Examples?
Shadows

- Attached Shadow
- Cast Shadow
With Shadows: PCA

(Epstein, Hallinan and Yuille; see also Hallinan; Belhumeur and Kriegman)

<table>
<thead>
<tr>
<th></th>
<th>Ball</th>
<th>Face</th>
<th>Phone</th>
<th>Parrot</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>48.2</td>
<td>53.7</td>
<td>67.9</td>
<td>42.8</td>
</tr>
<tr>
<td>#3</td>
<td>94.4</td>
<td>90.2</td>
<td>88.2</td>
<td>76.3</td>
</tr>
<tr>
<td>#5</td>
<td>97.9</td>
<td>93.5</td>
<td>94.1</td>
<td>84.7</td>
</tr>
<tr>
<td>#7</td>
<td>99.1</td>
<td>95.3</td>
<td>96.3</td>
<td>88.5</td>
</tr>
<tr>
<td>#9</td>
<td>99.5</td>
<td>96.3</td>
<td>97.2</td>
<td>90.7</td>
</tr>
</tbody>
</table>

Dimension: $5 \pm 2D$
Domain

- Lambertian
- Environment map

\[\lambda_{\text{max}} (\cos \theta, 0) \]
Lighting to Reflectance: Intuition
(See D’Zmura, ‘91; Ramamoorthi and Hanrahan ‘00)
Spherical Harmonics

- Orthonormal basis, h_{nm}, for functions on the sphere.
- n’th order harmonics have $2n+1$ components.
- Rotation = phase shift (same n, different m).
- In space coordinates: polynomials of degree n.
- S.H. used for BRDFs (Cabral et al.; Westin et al;). (See also Koenderink and van Doorn.)

\[h_{nm}(\theta, \phi) = \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} P_{nm}(\cos \theta)e^{im\phi} \]

\[P_{nm}(z) = \frac{(1-z^2)^{m/2}}{2^n n!} \frac{d^{n+m}}{dz^{n+m}}(z^2 - 1)^n \]
S.H. analog to convolution theorem

• Funk-Hecke theorem: “Convolution” in function domain is multiplication in spherical harmonic domain.

• k is low-pass filter.
Harmonic Transform of Kernel

\[k(\theta) = \max(\cos \theta, 0) = \sum_{n=0}^{\infty} k_n h_{n0} \]

\[k_n = \begin{cases}
\frac{\sqrt{\pi}}{2} & n = 0 \\
\frac{\sqrt{\pi}}{\sqrt{3}} & n = 1 \\
(-1)^{n+1} \frac{(n - 2)! \sqrt{(2n + 1)\pi}}{2^n \left(\frac{n}{2} - 1\right)! \left(\frac{n}{2} + 1\right)!} & n \geq 2, \text{ even} \\
0 & n \geq 2, \text{ odd}
\end{cases} \]
Amplitudes of Kernel

\[A_n \]

\(n \)

0.886, 0.591, 0.222, 0.037, 0.014, 0.007
Energy of Lambertian Kernel in low order harmonics

Accumulated Energy

37.5 87.5 99.2 99.81 99.93 99.97
Reflectance Functions Near Low-dimensional Linear Subspace

\[r = k \ast l = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (K_{nm}L_{nm})h_{nm} \]

\[\approx \sum_{n=0}^{2} \sum_{m=-n}^{n} (K_{nm}L_{nm})h_{nm} \]

Yields 9D linear subspace.
How accurate is approximation?

Point light source

$$r = k \times l = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (K_{nm} L_{nm}) h_{nm} \approx \sum_{n=0}^{2} \sum_{m=-n}^{n} (K_{nm} L_{nm}) h_{nm}$$

9D space captures 99.2% of energy
How accurate is approximation?

(2)

Worst case.

DC component as big as any other.

1st and 2nd harmonics of light could have zero energy

9D space captures 98% of energy
Forming Harmonic Images

\[b_{nm}(p) = \lambda r_{nm}(X, Y, Z) \]
Compare this to 3D Subspace

\(\lambda Z \)

\(\lambda X \)

\(\lambda Y \)
Accuracy of Approximation of Images

- Normals present to varying amounts.
- Albedo makes some pixels more important.
- *Worst case approximation* arbitrarily bad.
- “*Average*” case approximation should be good.
Models

Find Pose

Query

Compare

Harmonic Images

Matrix: B

Vector: I