

Lighting affects appearance



## How do we represent light? (1)

- Ideal distant point source:
- No cast shadows
- Light distant
- Three parameters
- Example: lab with controlled light


## How do we represent light? (2)



- Environment map: $/(\theta, \phi)$
- Light from all directions
- Diffuse or point sources
- Still distant
- Still no cast shadows.
- Example: outdoors (sky and sun)




## Lambertian + Point Source

$\vec{l}=l \bullet \vec{l} \quad\left\{\begin{array}{l}\vec{l} \text { is direction of light } \\ l \text { is intensity of light }\end{array}\right.$
$i=\max (0, \lambda(\vec{l} \bullet \hat{n})$
$i$ is radiance
$\lambda$ is albedo
$\hat{n}$ is surface normal


## Lambertian, point sources, no shadows. (Shashua, Moses)

- Whiteboard
- Solution linear
- Linear ambiguity in recovering scaled normals
- Lighting not known.
- Recognition by linear combinations.


## Linear basis for lighting



## A brief Detour: Fourier Transform, the other linear basis

- Analytic geometry gives a coordinate system for describing geometric objects.
- Fourier transform gives a coordinate system for functions.


## Basis

- $P=(x, y)$ means $P=x(1,0)+y(0,1)$
- Similarly:
$\begin{aligned} f(\theta)= & a_{11} \cos (\theta)+a_{12} \sin (\theta) \\ & +a_{21} \cos (2 \theta)+a_{22} \sin (2 \theta)+\ldots\end{aligned}$

Note, I'm showing non-standard basis, these are from basis using complex functions.

## Example

$\forall c, \exists a_{1}, a_{2}$ such that:
$\cos (\theta+c)=a_{1} \cos \theta+a_{2} \sin \theta$

## Orthonormal Basis

- ||(1,0)||=||(0,1)||=1
- $(1,0) .(0,1)=0$
- Similarly we use normal basis elements eg: $\cos (\theta)$

$$
\|\cos (\theta)\|=\sqrt{\int_{0}^{2 \pi} \cos ^{2} \theta d \theta}
$$

- While, eg:

$$
\int_{0}^{2 \pi} \cos \theta \sin \theta d \theta=0
$$

## 2D Example




## Convolution

$$
f(x)=g * h=\int g\left(x-x_{0}\right) h\left(x_{0}\right) d x_{0}
$$

Imagine that we generate a point in $f$ by centering $h$ over the corresponding point in $g$, then multiplying $g$ and $h$ together, and integrating.

## Convolution Theorem



- $F, G$ are transform of $f, g$

That is, $F$ contains coefficients, when we write $f$ as linear combinations of harmonic basis.

## Examples

$\cos \theta \otimes \cos \theta=?$
$\cos \theta \otimes \cos 2 \theta=?$
$\cos \theta \otimes f=$ ?
$(\cos \theta+.2 \cos 2 \theta+.1 \cos 3 \theta) \otimes f=$ ?
Low-pass filter removes low frequencies from signal. Hi-pass filter removes high frequencies. Examples?

## Shadows



## With Shadows: PCA

(Epstein, Hallinan and Yuille;
see also Hallinan; Belhumeur and Kriegman)

|  | Ball | Face | Phone | Parrot |
| :---: | :---: | :---: | :---: | :---: |
| $\# 1$ | 48.2 | 53.7 | 67.9 | 42.8 |
| \#3 | 94.4 | 90.2 | 88.2 | 76.3 |
| \#5 | 97.9 | 93.5 | 94.1 | 84.7 |
| $\# 7$ | 99.1 | 95.3 | 96.3 | 88.5 |
| $\# 9$ | 99.5 | 96.3 | 97.2 | 90.7 |

Dimension:

## Domain

- Lambertian
- Environment map




## Lighting to Reflectance: Intuition







## Spherical Harmonics

- Orthonormal basis, $h_{n m}$, for functions on the sphere.
- n'th order harmonics have $2 n+1$ components.
- Rotation = phase shift (same $n$, different $m$ ).
- In space coordinates: polynomials of degree $n$.
- S.H. used for BRDFs (Cabral et al.; Westin et al;). (See also Koenderink and van Doorn.)



## S.H. analog to convolution theorem

- Funk-Hecke theorem: "Convolution" in function domain is multiplication in spherical harmonic domain.
- $k$ is low-pass filter.


## Harmonic Transform of Kernel

$$
\begin{gathered}
k(\theta)=\max (\cos \theta, 0)=\sum_{n=0}^{\infty} k_{n} h_{n 0} \\
k_{n}= \begin{cases}\frac{\sqrt{\pi}}{2} & n=0 \\
\sqrt{\frac{\pi}{3}} & n=1 \\
(-1)^{\frac{n}{2}+1} \frac{(n-2)!\sqrt{(2 n+1) \pi}}{2^{n}\left(\frac{n}{2}-1\right)!\left(\frac{n}{2}+1\right)!} & n \geq 2, \text { even } \\
0 & n \geq 2, \text { odd }\end{cases}
\end{gathered}
$$

## Amplitudes of Kernel



## Energy of Lambertian Kernel in low order harmonics

Accumulated Energy


## Reflectance Functions Near Low-dimensional Linear Subspace



Yields 9D linear subspace.

## How accurate is approximation? Point light source



9D space captures 99.2\% of energy

## How accurate is approximation? <br> (2) <br> Worst case.

Amplitude of $k$


Amplitude of 1 = point source


- DC component as big as any other.
- 1st and 2nd harmonics of light could have zero energy


## 9D space captures 98\% of energy

## Forming Harmonic Images



## Compare this to 3D Subspace



## Accuracy of Approximation of Images

- Normals present to varying amounts.
- Albedo makes some pixels more important.
- Worst case approximation arbitrarily bad.
- "Average" case approximation should be good.


Find Pose


Harmonic Images
Query


Vector: I



