
Chapter 1

Multidimensional Scaling:
More complete proof and
some insights not mentioned
in class

1.1 Motive of MDS

We are given the pair-wise (Euclidean/non-Euclidean) distance matrix DX

of N points and we are asked to find a set of N points Y = {yi for i ∈ [1, N ]}
in a k dimensional space so that the pair-wise Euclidean distance matrix DY

calculated using Y is the closest possible approximation of DX .

1.2 Notation and convention

For ease of understanding and relatively simpler linear algebra manipula-
tions for the author, we will follow these conventions throughout the docu-
ment

• Vectors are boldface small: y

• Matrices are capital and boldface: X

• Each column of the data matrix contains one data vector

• e is an N × 1 column vector of all ones
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1.3 The main steps of MDS

1. Input: N ×N data matrix DX , dimension k

2. BX = −1
2HDXH, here, H = IN− 1

N eeT with e being an N×1 column
vector of all ones.

3. The k-rank SVD of centered matrix BX = (UD1/2)(D1/2UT ) = YTY,
therefore, U is an N × k matrix and D is an k × k diagonal matrix
with the k largest singular values on the diagonal and Y = D1/2UT

is a k ×N matrix.

4. The set of N k-dimensional embeddings/points are the N columns of
Y.

1.4 The insight of MDS

We start the proof of the algorithm with an assumption of a hypothetical set
of N points X = {xi for i ∈ [1, N ]} (with each xi as one column of X) in
d dimensions. Note that we have neither X nor do we know the value of d.
We are only supplied with the pair-wise Euclidean distances for X, given as
the distance matrix DX . Therefore, each element of DX can be written as

(DX
ij )2 = (xi − xj)

T (xi − xj) = ‖xi‖2 − 2xT
i xj + ‖xj‖2 (1.1)

We can easily see that

DX = Z− 2XTX + ZT (1.2)

Here, Z = zeT and z = [‖x‖21 ‖x‖
2
2 . . . ‖x‖

2
N ]T i.e. an N × 1 vector with each

element being the squared norm of hypothetical point set X. Therefore, Z
takes the form

Z =


‖x1‖2 ‖x1‖2 · · · ‖x1‖2

‖x2‖2 ‖x2‖2 · · · ‖x2‖2
...

...
. . .

...

‖xN‖2 ‖xN‖2 · · · ‖xN‖2

 (1.3)

Question- Compute 1
NZeeT and 1

N eeTZT .
Now, let’s translate the mean of the set of hypothetical point set (X) to

the origin. Note that this operation does not change the Euclidean distance
between any pairs of points but does a wonderful thing, which we will see
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shortly. To carry out this operation we simply compute the mean of all
points contained in X

mX =
1

N
Xe (see it yourself) (1.4)

Let’s define the centering operation as

H = IN −
1

N
eeT (see how XH is mean centered? ) (1.5)

Let’s now apply a ”double centering” operation to equation 1.2 to get (see
it yourself)

AX = HDXH = −2X̃T X̃

BX = −1

2
A = −1

2
HDXH = X̃T X̃

(1.6)

Here, X̃ is the matrix with ith column as the ”mean subtracted” hypothet-
ical points x̃i. Now we are done and the rest is just simple linear algebra
results. Remember, the task was to find a concrete set of N points (Y) in k
dimensions so that the pairwise Euclidean distances between all the pairs in
the concrete set Y is a close approximation to the pair-wise distances given
to us in the matrix DX i.e. we want to find DY such that

DY = argminrank(DY ≤k)

∥∥DX −DY
∥∥2
F

(1.7)

Note that after applying the ”double centering” operation to both X and
Y, eqn 1.7 yields

BY = argminrank(BY ≤k)

∥∥BX −BY
∥∥2
F

=
∥∥∥X̃T X̃− ỸT Ỹ

∥∥∥2
F

(1.8)

The above equation is a well known optimization problem that can be solved
via Singular Value Decomposition (SVD) of BX . The second equality is due
to the ”double centering” operation on the distance matrix DY as well.
Therefore, now we have eliminated the translational freedom from Y and
we can be sure that whatever embedding we get will have zero mean. This
is important because otherwise the embedding points would have been ar-
bitrary up to a translational degree of freedom (there is still a rotational
degree of freedom in the points).

BX ≈ UDUT = (UD1/2)(D1/2UT ) = ỸT Ỹ (1.9)
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Here, U is N × k matrix and D is k × k diagonal matrix with k largest
singular values on the diagonal and Ỹ = D1/2UT is k ×N matrix. Finally,
we get N embedding points in k dimension as the column vectors of Ỹ with
the property that it has a zero mean and is the embedding in dimension k
or less that best preserves the pair-wise Euclidean distances given to us in
the form of DX .
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