
Midterm, CMSC 828J – Spring 2013
Assigned, 3/25/13 – Due 4/3/2013

Instructions

Students must work individually to answer these questions. It is ok to
discuss material covered in class with other students, but not to share ideas
aimed at solving any particular questions on the exam. For example, it is
all right to review Kernel PCA with other students, but not to discuss any
thoughts on how this material applies to question 1. The exam is ”open
book”. Students may consult any material, including material on the class
web page. It is ok to look for additional reference material that might assist
in solving these problems. Any material that you benefit from that is not
on the class web page should be cited.

Please write up your exams neatly, and give complete and coherent an-
swers to all questions. If we cannot follow your reasoning in solving a ques-
tion with modest effort, your solution will be marked as incorrect.

Question 1 PCA, Kernel PCA

Let Φ be a mapping from a 2D space to a 5D feature space given as:
Φ(x, y) = (x2, y2, xy, x, y). Is there a set of data points, (xi, yi) so that
PCA in the original space will find that the magnitude of the two princi-
pal components of these points are bigger than 0, but kernel PCA in the
feature space will find that only the first principal component has non-zero
magnitude? If yes, give an example. If no, show why this is not possible.

Question 2 Wavelets, Fourier

Consider the function f(x) defined for x ∈ [0, 2π)

f(x) =

{
0 : x < 1
1 : x ≥ 1

(1)

(a) Write this as a linear combination of c (a constant function), sin(kx)
and cos(kx).

(b) Write it as a linear combination of Haar wavelets (including a con-
stant function).

(c) What does this tell us about the sparseness of images when repre-
sented in the wavelet domain.
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Question 3 Sparse Projections

Suppose we have an unknown point, p, in a 3D space. We project it onto two
known, randomly chosen directions, r1 and r2, so that we know < p, r1 >
and < p, r2 >.

(a) We now attempt to reconstruct our original point by finding a 3D
point that produces these projections, and that has the smallest possible L1

norm. True or false: this reconstructed point will always be the sparsest
point that produces these two projections (ie the point with the smallest L0

norm)? Either prove this is true or give an example where it is false.
(b) Suppose we reconstruct the point by minimizing the L2 distance

instead of the L1 distance. True or false: this reconstructed point will never
be the sparsest point that produces these projections? Either prove this is
true or give an example where it is false.

Question 4 Multi-modal learning

In this question we will look into different optimization problems to learn
multi-modal projection directions and try to analyze them. Notations for
this question: Xi ∀ i ∈ {1, 2} are data matrices in the ith view, with one
column per data sample. The jth column of X1 and X2 represent paired
data in view 1 and 2, respectively. If the dimension of the data samples in
the ith view is di and there are a total of n samples, Xi will be di × n.

We use MATLAB notation in representing matrix operations. If this is
unclear, please ask.

Optimization 1

Let’s make a matrix Z = [X1;X2] (that is, X1 is on top of X2). Now let’s
solve this optimization problem

W,H = argmin
∥∥∥Z − Ŵ Ĥ

∥∥∥2
F

s.t. Ŵ T Ŵ = Im

(2)

Here, W will be a (d1 + d2)×m with m� min(d1, d2) and H is m× n and
Im is the m×m Identity matrix.

• Q1 - How would you solve this problem? Prove that your solution
does in fact minimize (2).
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• Q2 - Let’s denote W1 = W (1 : d1, :) and W2 = W (d1 + 1 : end, :).
Consider a column of W1 and the corresponding column of W2. What
is the relationship between these columns? Hint: We have provided
data matrices X1 and X2 as face images of 200 person under two
different poses in matlab format, in case you want to see what W1 and
W2 look like (see class web page).

• Q3 - Are W T
1 W1 and W T

2 W2 diagonal matrices?

• Q4 We can use this model to generate a latent space for new paired
data. For example, suppose that xnew1 and xnew2 are paired data, drawn
from the same distribution as X1 and X2. Then we can find a latent
space representation by solving: W1h

new
1 = xnew1 and W2h

new
2 = xnew2 ,

and using hnew and hnew2 as the latent space representation of xnew1

and xnew2 . This latent space will be successful when, for paired data,
hnew1 ≈ hnew2 . Use first 100 paired-subjects supplied in the mat files
to learn W1 and W2 with different values of m ∈ {10, 20, 30, 40, 50, 60}
and plot the ratio of corr(hi1, h

i
2) and corr(xi1, x

i
2) for the remaining 100

subject pairs for different values of m. If implemented properly, it will
convince you that indeed the learned latent space brings correspnding
points together in the latent space, which are otherwise far in the
original representations.

(a) Give an example of a simple, analytically described distribution
for X1 and X2 for which this condition will hold?

(b) Give an example of a simple, analytically described distribution
for X1 and X2 for which this condition will not hold?

• Q5 - Can you find a kernel version of this problem, such that, Xi → Φi

and Wi → W̃i. Here, Φi (dHi × n) and W̃i (dHi ×m) are the matrices
with data samples and directions mapped to a Hilbert space with dHi

being the dimensionality of the Hilbert space, which can possibly be
infinite as well. We are given the corresponding kernels for the Hilbert
spaces as K1(φ

i
1, φ

j
1) = Kij

1 and K2(φ
i
2, φ

j
2) = Kij

2 , for view 1 and 2
respectively. Show the steps of kernelization or state why it is not
possible to kernelize this problem. (Hint: consider the answer to Q2
in solving this problem).
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Optimization 2

Lets make a matrix Z = X1X
T
2 . Now let’s solve the following optimization

problem

W,H = argmin
∥∥∥Z − Ŵ Ĥ

∥∥∥2
F

s.t. Ŵ T Ŵ = ĤĤT = D
(3)

Here, W is d1 ×m matrix, H is m × d2 matrix and D is m ×m diagonal
matrix.

• Q1 - How would you solve this problem? Prove that your solution
does in fact minimize (3).

• Q2 We can also use this model to generate a latent space for new paired
data. Suppose that xnew1 and xnew2 are paired data. How do we find
their latent space representation? Hint: We have provided data ma-
trices X1 and X2 as face images of 200 person under two different poses
in matlab format, in case you want to see what W and H look like (see
class web page). Use first 100 paired-subjects supplied in the mat files
to learn W and H with different values of m ∈ {10, 20, 30, 40, 50, 60}
and plot the ratio of corr(hi1, h

i
2) and corr(xi1, x

i
2) for the remaining

100 subject pairs for different values of m. Here, hi1 and hi2 will be
the latent space reprsentation for the paired data samples xi1 and xi2.
If implemented properly, it will convince you that indeed the learned
latent space bring correspnding points together in the latent space,
which are otherwise far in the original representations.

• Q3 - Can you find a kernel version of this problem, such that, Xi → Φi,
W → W̃ and H → H̃. Here, Φi (dHi × n), W̃ (dH1 × m), and H̃
(m×dH2) are the matrices with data samples and directions mapped to
a Hilbert space with dHi being the dimensionality of the Hilbert space,
which can possibly be infinite as well. We are given the corresponding
kernels for the Hilbert spaces as K1(φ

i
1, φ

j
1) = Kij

1 and K2(φ
i
2, φ

j
2) =

Kij
2 , for view 1 and 2 respectively. Show the steps of kernelization or

state why it is not possible to kernelize this problem. (Hint: consider
the answer to Q2 in solving this problem).

Question 5 Manifolds

(a) Consider a unit sphere parameterized by projecting each hemisphere
orthogonally into a plane. For example, we define xα : Uα ⊂ R2 →M so that
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Uα is the unit disk in the x− y plane, and xα(x, y) = (x, y,
√

1− x2 − y2).
Note that xα(Uα) covers the upper hemisphere of the sphere only, and does
not include points on the equator. We can similarly define three additional
projections so that we cover the entire sphere, but we will not make use of
these other projections in this problem. Give the local Riemannian metric
at each point in the region Uα.

(b) Consider a manifold for which, in one chart, xα : Uα ⊂ R2 → M ,
with Uα given by the subset of the x − y plane with x > 0, y > 0, and for
which the Riemannian metric is:(

x 0
0 1

)
What is the length of a straight line segment from (1, 1) to (2, 2)? Note, here
I mean the line segment is straight according to normal Euclidean distance;
it is not the geodesic path from (1, 1) to (2, 2) on this manifold.

(c) CHALLENGE PROBLEM: For the manifold and Riemannian
metric given in (b), what is the equation for the geodesic that passes through
the point (1, 1) in the direction (1, 1)?
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