
Shape Spaces

1. Can we define a metric space for shapes?
• Distance between shapes measures perceptual 

similarity.
• Nice properties such as triangle inequality.

2. Unique geodesic paths
• This provides morphing

3. Set of points vs. curves



Assumptions

• Two sets of 2D points.

• Mostly we assume there exists a correct one-
to-one correspondence

• And this correspondence is given.
– This is very natural in morphometrics, where 

points are measured and labeled.
– In vision we must solve for correspondence.  Next 

class we’ll look at papers that do this.



Shape Space
• What is shape?  Qualities of points that 

don’t depend on translation, rotation or 
scale.

• So describe points independent of similarity 
transformation.

1. Remove translation.
• Simplest way, translate so point 1 is at origin, then remove 

point one.
• More elegant, translate center of mass to origin, remove a 

point.
2. Scale so that sum ||Xi||^2 = 1.
Resulting set of points is called pre-shape.
Pre because we haven’t removed rotation yet.
Notation: , U and X denote sets of normalized points.  

Points called Xi and Ui, with coordinates (xi,yi), (ui, 
vi).



Pre-shape

• If we started with n points, we now have 
n-1 so that:

• sum xi^2 + yi^2 = 1.
• So we can think of these coordinates as 

lying on a unit hypersphere in 2(n-1)-
dimensional space.



Shape

• If we consider all possible rotations of a set of 
normalized points, these trace out a closed, 
1D curve in pre-shape space.

• Distances between shapes can be thought of 
as distances between these curves.
– Notice that to compute distance, without loss of 

generality we can assume that one set of points 
(U) does not rotate, since rotating both point sets 
by the same amount doesn’t change distances.



Procrustes Distances

• Full Procrustes Distance.  DF
– min(s, θ) ||U – sXR(θ).||  That is, we find a scaling 

and rotation of X that minimizes the euclidean
distance to U.  (R(θ) means rotate by θ).

• Partial Procrustes Distance.  DP
– min(θ) ||U – XR(θ)||.  That is, rotate X to minimize 

the euclidean distance to U.

• Procrustes Distance.  ρ
– Rotate X to minimize the geodesic distance on the 

sphere from X to U.



Linear Pose Solving

• We can linearly find optimal similarity transformation 
that matches X to U.  (ie., minimize sum ||AXi-Ui||^2, 
where A is a similarity transformation. 
– This is asymmetric between X and U.

• In same way we can linearly compute Full Procrustes
Distance.
– This is symmetric.
– Leads immediately to other procrustes distances.



Linear Pose: 2D rotation, 
translation and scale

θθ

θθ
θθ

sin,coswith   

111

...

111

...

cossin

sincos...

21

21

21

21

21

21

sbsa

yyy

xxx

tab

tba

yyy

xxx

t

t
s

vvv

uuu

n

n

y

x

n

n

y

x

n

n

==

�
�
�

�

�

�
�
�

�

�

��
�

�
��
�

�

−

�
�
�

�

�

�
�
�

�

�

��
�

�
��
�

�

−
=�

�

�
�
�

�

• Notice a and b can take on any values.

• Equations linear in a, b, translation.

• Solve exactly with 2 points, or 
overconstrained system with more.

s
abas =+= θcos22



Similarity Matching

• Given point sets X and U, compare by finding 
similarity transformation A that minimizes 
||AX-U||.
– X = points X1, …Xn.  U = points U1…Un.
– Find A to minimize sum ||AXi – Ui||^2
– This is just a straightforward, linear problem.

• Taking derivatives with respect to four unknowns of A 
gives four linear equations in four unknowns.



Issues with this approach

• It is asymmetric.
– Ok when comparing a model to an image.

– Not so sensible for comparing two shapes.



• Note that we now also know how to calculate the Full 
Procrustes Distance.  This is just a least-squares solution 
to the overconstrained problem:
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•It is not obvious that Full Procrustes is symmetric.



Given two points on the hypersphere, we can draw the 
plane containing these points and the origin.

DF

ρ

DP

ρ

Procrustes Distances is ρ.

DP = 2 sin ( ρ/2)

DF = sin ρ.  

• These are all monotonic in ρ.  
So the same choice of rotation 
minimizes all three.

• DF is easy to compute, others 
are easy to compute from DF.  



Why Procrustes Distance?

• Procrustes distance is most natural.  Our intuition is 
that given two objects, we can produce a sequence 
of intermediate objects on a ‘straight line’ between 
them, so the distance between the two objects is the 
sum of the distances between intermediate objects.
This requires a geodesic.



Tangent Space

• Can compute a hyperplane tangent to the 
hypersphere at a point in preshape space.

• Project all points onto that plane.
• All distances Euclidean.  Average shape easy 

to find.
• This is reasonable when all shapes similar.
• In this case, all distances are similar too.

– Note that when ρ is small, ρ, 2sin(ρ /2), sin(ρ) are 
all similar.



Other Point Matching 
Approaches: Chamfer Matching
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For every edge point in 
the transformed object, 
compute the distance to 
the nearest image edge 
point.  Sum distances.
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Main Feature:

• Every model point matches an image 
point.

• An image point can match 0, 1, or more 
model points.



Then, minimize this distance over 
pose.

• Example: minimum Chamfer distance over all 
translations.
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Variations
• Sum a different distance

– f(d) = d2

– or Manhattan distance.
– f(d) = 1 if d < threshold, 0 otherwise.

– This is called bounded error.

• Use maximum distance instead of sum.
– This is called: directed Hausdorff distance.
– Use median distance.

• Use other features
– Corners.
– Lines.  Then position and angles of lines must be similar.

• Model line may be subset of image line.



Thin-Plate Splines
A function, f, R2 -> R2 is a thin-plate spline if:

• Constraint: Given corresponding points: X1…Xn and 
U1…Un, f(Xi)=Ui.

• Energy: f minimizes the following:
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If we think of this as the amount of bending produced by 
f.  Allows arbitrary affine transformation.



• Solution: The function f can be computed 
using straightforward linear algebra.  See 
Principal Warps: Thin-Plate Splines and the 
Decomposition of Deformations by Bookstein, 
or Statistical Shape Analysis by Dryden and 
Mardia for details.

• Extension: Can penalize mismatch of points 
(using function of || Ui – f(Xi)||).

• Results: Much like D’Arcy Thompson.


