Statistical Models of Appearance for Image Interpretation

T.F Cootes & C.J. Taylor

Harsh Nanda 30th September, 2003

Problem Overview

- Image Interpretation
 - Prior knowledge
 - Structure Recovery
 - Labeling
- Model Based Approach
 - Describe and label expected structure
 - Interpretation \equiv Matching

Example

Initial

After 2 iterations

After 6 iterations

After 18 iterations

Modeling

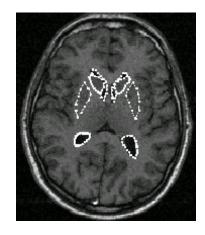
Model Characteristics

- What? Shape or Appearance
 - Active Shape Model
 - Active Appearance Model
- Deformable General & Specific

Method

Learn variation from annotated image set

Modeling


Training Set

- Annotated Images: Key landmarks
- PCA

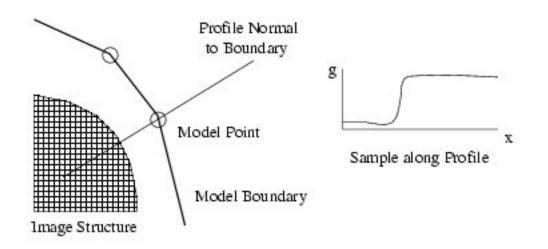
$$x = x + P_s b_s$$

o Appearance

$$g = g + P_g b_g$$

Modeling

 Possible correlation b/w shape and appearance


• PCA on
$$b_s \& b_g$$

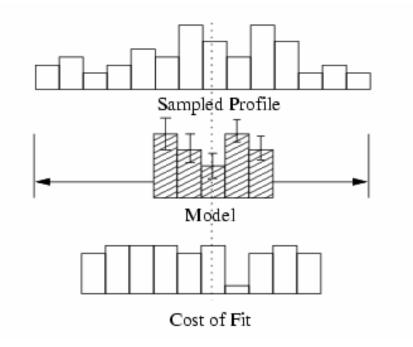
 $\begin{pmatrix} \mathbf{W}_s \mathbf{b}_s \\ \mathbf{b}_g \end{pmatrix} = \mathbf{b} = \begin{pmatrix} \mathbf{Q}_s \\ \mathbf{Q}_g \end{pmatrix} \mathbf{c} = \mathbf{Q}\mathbf{c}$
 $\mathbf{x} = \bar{\mathbf{x}} + \mathbf{P}_s \mathbf{W}_s^{-1} \mathbf{Q}_s \mathbf{c} , \qquad \mathbf{g} = \bar{\mathbf{g}} + \mathbf{P}_g \mathbf{Q}_g \mathbf{c}$

Generating shape & texture in image
 X = S_t(x)
 g_{im} = T_u(g)

Active Shape Model

- Rough starting approximation of (b,t)
- Iterate
 - Create an instance of *X*
 - Examine region **around** X_i
 - Update X_i by replacing by best match X_i
 - Update (*b*,*t*) to best fit new *X*
 - Repeat until convergence

Active Shape Model



Modelling Local Structure

- Sample along a profile k pixels on each side to get 2k+1 samples, g_i
- Normalize g_i
- Assume multivariate gaussian distribution, estimate g⁻ & S_g
- Quality of fit of a new sample g_s

$$f(\mathbf{g}_s) = (\mathbf{g}_s - \hat{\mathbf{g}})^T \mathbf{S}_g^{-1} (\mathbf{g}_s - \hat{\mathbf{g}})$$

Modelling Local Structure

ASM: Example

Initial

After 2 iterations

After 6 iterations

After 18 iterations

Initial

After 2 iterations

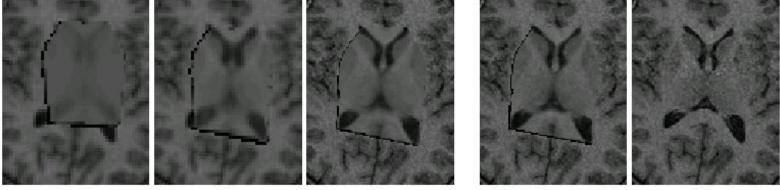
After 20 Iterations

Active Appearance Models

- Rough starting approximation of (c,t,u)
- Iterate
 - Create an instance of *X*
 - Sample pixels in this region, g_{im}

•
$$g_s = T_u^{-1}(g_{im})$$

$$\circ \quad g_m = g^- + P_g Q_g c$$


$$\circ r(p) = g_s - g_m$$

$$(p' = (c'|t'|u'))$$

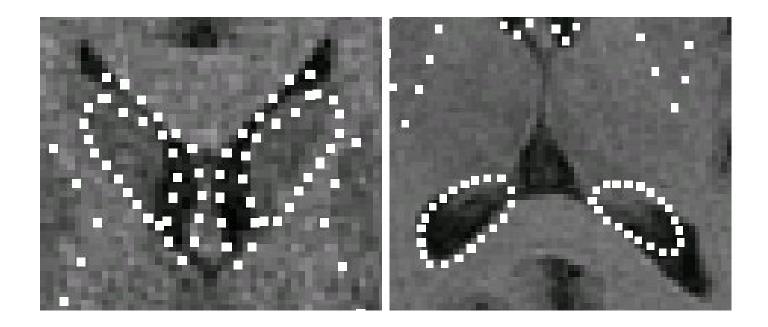
 $\circ p = p + k^* r(p)$

AAM: Example

- Central structure of brain slice
- 10000 pixels & 30 c parameters

Initial

2 its


6 its

16 its (converged)

original

AAM: Limitations

AAM usually close to optimal but not exact

AAM: Improvements

- Model whole visible structure
- Explicit searching outside current patch e.g. along normal as ASM
- Multiple starting points
- Combine AAM & ASM: Weighted average of independent runs

Multi-Resolution Framework

- Methodology
 - Generate image pyramid by subsampling
 - Search subject in coarse image
 - Refine location at higher resolution
- Advantages
 - Efficiency
 - Robustness

Comparison: ASM v/s AAM

- ASMs look around, AAMs look inside
 - ASM larger capture range, fast
 - AAM more stable
- ASM need more model points, AAM, convincing model with relatively small number of landmarks
- ASM, more accurate feature point location, AAM, better texture match