

Template Matching – Rigid
Motion

• Find transformation to align two images.
• Focus on geometric features

– (not so much interesting with intensity
images)

– Emphasis on tricks to make this efficient.

Problem Definition

• An Image is a set of 2D geometric features,
along with positions.

• An Object is a set of 2D/3D geometric
features, along with positions.

• A pose positions the object relative to the
image.
– 2D Translation; 2D translation + rotation; 2D

translation, rotation and scale; planar or 3D object
positioned in 3D with perspective or scaled orth.

• The best pose places the object features
nearest the image features

Two parts to the problem

• Definition of cost function.
• Search method for finding best pose.

1. Can phrase this as search among poses.
2. Or as search among correspondences

3. There are connections between two.

Example

Cost Function

• We look at this first, since it defines the
problem.

• Again, no perfect measure;
– Trade-offs between veracity of measure

and computational considerations.

• One-to-one vs. many-to-one
• Bounded error vs. metric

Example: Chamfer Matching
Many-to-one, distance

�
i

d

For every edge point in
the transformed object,
compute the distance to
the nearest image edge
point. Sum distances.

||),||||,,||||,,min(||
21 1 mii

n

i i
qpqpqp ��

=

Main Feature:

• Every model point matches an image
point.

• An image point can match 0, 1, or more
model points.

Variations
• Sum a different distance

– f(d) = d2

– or Manhattan distance.
– f(d) = 1 if d < threshold, 0 otherwise.

– This is called bounded error.

• Use maximum distance instead of sum.
– This is called: directed Hausdorff distance.

• Use other features
– Corners.
– Lines. Then position and angles of lines must be

similar.
• Model line may be subset of image line.

Other comparisons

• Enforce each image feature can match
only one model feature.

• Enforce continuity, ordering along
curves.

• These are more complex to optimize.

Pose Search: Standard
Optimization Heuristics

• Brute force search with dense sampling.
• Random starting point + gradient

descent.
– Multiple random starting points
– Stochastic gradient descent

• Any other optimization method you can
think of.

Clever Idea 1: Chamfer Matching
with the Distance Transform

0
0

0 0
0
0
0

1
1

1

1
1

1

1
1

11
1
1 1

1

2
2

2
2

2
2
2
2

2
2

22 3
3

3
3
3
3

3
3 4

Example: Each pixel has (Manhattan)
distance to nearest edge pixel.

D.T. Adds Efficiency

• Compute once.
• Fast algorithms to compute it.
• Makes Chamfer Matching simple.

0
0

0 0
0
0
0

1
1

1

1
1

1

1
1

11
1
1 1

1

2
2

2
2

2
2
2
2

2
2

22 3
3

3
3
3
3

3
3 4

Then, try all translations of model edges. Add
distances under each edge pixel.

That is, correlate edges with Distance Transform

Computing Distance Transform

• It’s only done once, per problem, not once
per pose.

• Basically a shortest path problem.
• Simple solution passing through image once

for each distance.
– First pass mark edges 0.
– Second, mark 1 anything next to 0, unless it’s

already marked. Etc….
• Actually, a more clever method requires 2

passes.

Chamfer Matching Complexity

• Brute force approach: for each pose,
compare each model point to every image
point. O(pnm). p = number poses, n =
number of image points, m = number of
model points.

• With distance transform: compute D.T., then
for every pose, sum value under each model
edge. O(s + pm). s = number of pixels,
which is about same as p.

Clever Idea 2: Ransac

• Match enough features in model to
features in image to determine pose.

• Examples:
– match a point and determine translation.
– match a corner and determine translation

and rotation.
– Points and translation, rotation, scaling?
– Lines and rotation and translation?

(Forsyth & Ponce)

Complexity

• Suppose model has m points and image has n
points. There are nm matches.

When we match a model point, there is a 1/n
probability this match is right.

If we match k model points, probability all are right is
approximately (1/n)k.

If we repeat this L times, probability that at least one
pose is right is:

L
k

n
)

1
1(1 �

�

�
�
�

�−−

Figure from “Object recognition using alignment,” D.P. Huttenlocher and S.
Ullman, Proc. Int. Conf. Computer Vision, 1986, copyright IEEE, 1986

The Hough Transform for
Lines

• A line is the set of points (x, y) such that:

y = mx + b
• For any (x, y) there is a line in (m,b) space

describing the lines through this point. Just let
(x,y) be constants and m, b be unknowns.

• Each point gets to vote for each line in the
family; if there is a line that has lots of votes,
that should be the line passing through the
points

Mechanics of the Hough
transform

• Construct an array
representing m, b

• For each point, render
the line y=mx+b into
this array, adding one at
each cell

• Questions
– how big should the cells

be? (too big, and we
cannot distinguish
between quite different
lines; too small, and
noise causes lines to be
missed)

• How many lines?
– count the peaks in the

Hough array

• Who belongs to which
line?
– tag the votes

• Can modify voting, peak
finding to reflect noise.

• Big problem if noise in
Hough space different
from noise in image
space.

Some pros and cons

• Run-time
– Complexity of RANSAC n*n*n

– Complexity of Hough n*d

Error behavior

• Hough handles error with buckets. This gives a
larger set of lines consistent with point, but ad-
hoc.

• Ransac handles error with threshold. Well-
motivated for error in other points, but not for
error in first 2 points.
– But works if we find some 2 points w/ low error.

• Error handling sloppy -> clutter bigger problem.
• Many variations to handle these issues.

Pose: Generalized Hough
Transform

• Like Hough Transform, but for general
shapes.

• Example: match one point to one point,
and for every rotation of the object its
translation is determined.

• Example: match enough features to
determine pose, then vote for best
pose.

Correspondence: Interpretation
Tree Search

• Represent all possible sets of matches as
exponential sized tree.

• Each node involves another match
• Wildcard allowed for no matches.
• Prune tree when set of matches incompatible

(this seems to imply bounded error).
• Trick: some fast way of evaluating

compatability.
• Trick: different tree search algorithms. Best

first. A*….

2D Euclidean Transformation

• Check pairwise compatibility
– Fast

– Conservative test
a

m

n

Cass: Correspondence pose
duality

• Suppose we match two features with
bounded error.
– There is a set of transformations that fit.
– For nm matches, nm sets.
– As these intersect, they carve

transformation space into regions.
• Within a region, feasible matches are the same.
• If sets are convex, #regions is limited.
• If everything is linear, this becomes easier.

Example: points, 2D translation
L-infinity norm

• Every cell is bounded by axial lines.

• Must contain point where two lines intersect.

• No more than (nm)2 cells.

• If we sample points where all pairs of lines
intersect, we sample all cells.

General case

• Can extend to any linear transformation and
convex, polygonal error bound.

• Every model point and every error line lead to
hyperplane in transformation space.

• These divide transformation space into
convex cells. Each has vertices at
intersection of d hyperplanes.

• Complexity (mn)d

Summary

• All these methods exponential in
dimension of transformation.

• Clever & effective for translation, 2D
euclidean.

• Too slow for 3D to 2D recognition
– This is why Lowe used grouping.

