

Template Matching - Rigid Motion

- Find transformation to align two images.
- Focus on geometric features
- (not so much interesting with intensity images)
-Emphasis on tricks to make this efficient.

Problem Definition

- An Image is a set of 2D geometric features, along with positions.
- An Object is a set of 2D/3D geometric features, along with positions.
- A pose positions the object relative to the image.
- 2D Translation; 2D translation + rotation; 2D translation, rotation and scale; planar or 3D object positioned in 3D with perspective or scaled orth.
- The best pose places the object features nearest the image features

Two parts to the problem

- Definition of cost function.
- Search method for finding best pose.

1. Can phrase this as search among poses.
2. Or as search among correspondences
3. There are connections between two.

Example

Cost Function

- We look at this first, since it defines the problem.
- Again, no perfect measure;
- Trade-offs between veracity of measure and computational considerations.
- One-to-one vs. many-to-one
- Bounded error vs. metric

Example: Chamfer Matching Many-to-one, distance

For every edge point in the transformed object, compute the distance to the nearest image edge point. Sum distances.

Main Feature:

- Every model point matches an image point.
- An image point can match 0,1 , or more model points.

Variations

- Sum a different distance
$-f(d)=d^{2}$
- or Manhattan distance.
$-f(d)=1$ if $d<$ threshold, 0 otherwise.
- This is called bounded error.
- Use maximum distance instead of sum.
- This is called: directed Hausdorff distance.
- Use other features
- Corners.
- Lines. Then position and angles of lines must be similar.
- Model line may be subset of image line.

Other comparisons

- Enforce each image feature can match only one model feature.
- Enforce continuity, ordering along curves.
- These are more complex to optimize.

Pose Search: Standard Optimization Heuristics

- Brute force search with dense sampling.
- Random starting point + gradient descent.
- Multiple random starting points
- Stochastic gradient descent
- Any other optimization method you can think of.

Clever Idea 1: Chamfer Matching with the Distance Transform

Example: Each pixel has (Manhattan) distance to nearest edge pixel.

D.T. Adds Efficiency

- Compute once.
- Fast algorithms to compute it.
- Makes Chamfer Matching simple.

Then, try all translations of model edges. Add distances under each edge pixel.
That is, correlate edges with Distance Transform

| 2 | 1 | | 1 | 2 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 2 | 1 | |
| 0 | | 2 | 3 | | 1 | 0 |
| 1 | 2 | 3 | 2 | 1 | | 1 |
| 2 | 3 | 3 | 2 | 1 | | 1 |
| 3 | 4 | 3 | 2 | 1 | 0 | 1 |

Computing Distance Transform

- It's only done once, per problem, not once per pose.
- Basically a shortest path problem.
- Simple solution passing through image once for each distance.
- First pass mark edges 0 .
- Second, mark 1 anything next to 0 , unless it's already marked. Etc....
- Actually, a more clever method requires 2 passes.

Chamfer Matching Complexity

- Brute force approach: for each pose, compare each model point to every image point. $\mathrm{O}(p n m) . \quad p=$ number poses, $n=$ number of image points, $m=$ number of model points.
- With distance transform: compute D.T., then for every pose, sum value under each model edge. $\mathrm{O}(s+p m) . s=$ number of pixels, which is about same as p.

Clever Idea 2: Ransac

- Match enough features in model to features in image to determine pose.
- Examples:
- match a point and determine translation.
- match a corner and determine translation and rotation.
- Points and translation, rotation, scaling?
- Lines and rotation and translation?

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:
n - the smallest number of points required
k - the number of iterations required
t - the threshold used to identify a point that fits well
d - the number of nearby points required
to assert a model fits well
Until k iterations have occurred
Draw a sample of n points from the data uniformly and at random
Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the line
against t; if the distance from the point to the line
is less than t, the point is close
end
If there are d or more points close to the line then there is a good fit. Refit the line using all these points.
end
Use the best fit from this collection, using the
fitting error as a criterion
(Forsyth \& Ponce)

Complexity

- Suppose model has m points and image has n points. There are $n m$ matches.
When we match a model point, there is a $1 / n$ probability this match is right.
If we match k model points, probability all are right is approximately $(1 / n)^{k}$.
If we repeat this L times, probability that at least one pose is right is:

$$
1-\left(1-\left(\frac{1}{n}\right)^{k}\right)^{L}
$$

Figure from "Object recognition using alignment," D.P. Huttenlocher and S. Ullman, Proc. Int. Conf. Computer Vision, 1986, copyright IEEE, 1986

The Hough Transform for

 Lines- A line is the set of points (x, y) such that:
$y=m x+b$
- For any (x, y) there is a line in (m, b) space describing the lines through this point. Just let (x, y) be constants and m, b be unknowns.
- Each point gets to vote for each line in the family; if there is a line that has lots of votes, that should be the line passing through the points

Mechanics of the Hough transform

- Construct an array representing m, b
- For each point, render the line $y=m x+b$ into this array, adding one at each cell
- Questions
- how big should the cells be? (too big, and we cannot distinguish between quite different lines; too small, and noise causes lines to be missed)
- How many lines?
- count the peaks in the Hough array
- Who belongs to which line?
- tag the votes
- Can modify voting, peak finding to reflect noise.
- Big problem if noise in Hough space different from noise in image space.

Some pros and cons

- Run-time
- Complexity of RANSAC n*n*n
- Complexity of Hough n*d

Error behavior

- Hough handles error with buckets. This gives a larger set of lines consistent with point, but adhoc.
- Ransac handles error with threshold. Wellmotivated for error in other points, but not for error in first 2 points.
- But works if we find some 2 points w/ low error.
- Error handling sloppy -> clutter bigger problem.
- Many variations to handle these issues.

Pose: Generalized Hough Transform

- Like Hough Transform, but for general shapes.
- Example: match one point to one point, and for every rotation of the object its translation is determined.
- Example: match enough features to determine pose, then vote for best pose.

Correspondence: Interpretation Tree Search

- Represent all possible sets of matches as exponential sized tree.
- Each node involves another match
- Wildcard allowed for no matches.
- Prune tree when set of matches incompatible (this seems to imply bounded error).
- Trick: some fast way of evaluating compatability.
- Trick: different tree search algorithms. Best first. A*....

2D Euclidean Transformation

- Check pairwise compatibility
- Fast
- Conservative test

Cass: Correspondence pose duality

- Suppose we match two features with bounded error.
- There is a set of transformations that fit.
- For nm matches, nm sets.
- As these intersect, they carve transformation space into regions.
- Within a region, feasible matches are the same.
- If sets are convex, \#regions is limited.
- If everything is linear, this becomes easier.

Example: points, 2D translation L-infinity norm

- Every cell is bounded by axial lines.
- Must contain point where two lines intersect.
- No more than (nm) ${ }^{2}$ cells.
- If we sample points where all pairs of lines intersect, we sample all cells.

General case

- Can extend to any linear transformation and convex, polygonal error bound.
- Every model point and every error line lead to hyperplane in transformation space.
- These divide transformation space into convex cells. Each has vertices at intersection of d hyperplanes.
- Complexity (mn) ${ }^{\text {d }}$

Summary

- All these methods exponential in dimension of transformation.
- Clever \& effective for translation, 2D euclidean.
- Too slow for 3D to 2D recognition
- This is why Lowe used grouping.

