




Template Matching – Rigid 
Motion

• Find transformation to align two images.
• Focus on geometric features

– (not so much interesting with intensity 
images)

– Emphasis on tricks to make this efficient.



Problem Definition

• An Image is a set of 2D geometric features, 
along with positions.

• An Object is a set of 2D/3D geometric 
features, along with positions.

• A pose positions the object relative to the 
image.
– 2D Translation; 2D translation + rotation; 2D 

translation, rotation and scale; planar or 3D object 
positioned in 3D with perspective or scaled orth.

• The best pose places the object features 
nearest the image features



Two parts to the problem

• Definition of cost function.
• Search method for finding best pose.

1. Can phrase this as search among poses.
2. Or as search among correspondences

3. There are connections between two.



Example



Cost Function

• We look at this first, since it defines the 
problem.

• Again, no perfect measure;
– Trade-offs between veracity of measure 

and computational considerations.

• One-to-one vs. many-to-one
• Bounded error vs. metric



Example: Chamfer Matching
Many-to-one, distance
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For every edge point in 
the transformed object, 
compute the distance to 
the nearest image edge 
point.  Sum distances.
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Main Feature:

• Every model point matches an image 
point.

• An image point can match 0, 1, or more 
model points.



Variations
• Sum a different distance

– f(d) = d2

– or Manhattan distance.
– f(d) = 1 if d < threshold, 0 otherwise.

– This is called bounded error.

• Use maximum distance instead of sum.
– This is called: directed Hausdorff distance.

• Use other features
– Corners.
– Lines.  Then position and angles of lines must be 

similar.
• Model line may be subset of image line.



Other comparisons

• Enforce each image feature can match 
only one model feature.

• Enforce continuity, ordering along 
curves.

• These are more complex to optimize.



Pose Search: Standard 
Optimization Heuristics

• Brute force search with dense sampling.
• Random starting point + gradient 

descent.
– Multiple random starting points
– Stochastic gradient descent

• Any other optimization method you can 
think of.



Clever Idea 1: Chamfer Matching 
with the Distance Transform
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Example: Each pixel has (Manhattan) 
distance to nearest edge pixel.



D.T. Adds Efficiency

• Compute once.
• Fast algorithms to compute it.
• Makes Chamfer Matching simple.
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Then, try all translations of model edges.  Add 
distances under each edge pixel.  

That is, correlate edges with Distance Transform



Computing Distance Transform

• It’s only done once, per problem, not once 
per pose.

• Basically a shortest path problem.
• Simple solution passing through image once 

for each distance.
– First pass mark edges 0.  
– Second, mark 1 anything next to 0, unless it’s 

already marked.  Etc….
• Actually, a more clever method requires 2 

passes.  



Chamfer Matching Complexity

• Brute force approach: for each pose, 
compare each model point to every image 
point.  O(pnm).  p = number poses, n = 
number of image points, m = number of 
model points.

• With distance transform: compute D.T., then 
for every pose, sum value under each model 
edge.  O(s + pm).  s = number of pixels, 
which is about same as p.  



Clever Idea 2: Ransac

• Match enough features in model to 
features in image to determine pose.  

• Examples:
– match a point and determine translation.
– match a corner and determine translation 

and rotation.
– Points and translation, rotation, scaling?
– Lines and rotation and translation?





(Forsyth & Ponce)



Complexity 

• Suppose model has m points and image has n 
points.  There are nm matches.

When we match a model point, there is a 1/n 
probability this match is right.

If we match k model points, probability all are right is 
approximately (1/n)k.

If we repeat this L times, probability that at least one 
pose is right is:

L
k

n
)

1
1(1 �

�

�
�
�

�−−



Figure from “Object recognition using alignment,” D.P. Huttenlocher and S. 
Ullman, Proc. Int. Conf. Computer Vision, 1986, copyright IEEE, 1986



The Hough Transform for 
Lines

• A line is the set of points (x, y) such that: 

y = mx + b
• For any (x, y) there is a line in (m,b) space 

describing the lines through this point.  Just let 
(x,y) be constants and m, b be unknowns.

• Each point gets to vote for each line in the 
family; if there is a line that has lots of votes, 
that should be the line passing through the 
points



Mechanics of the Hough 
transform

• Construct an array 
representing m, b

• For each point, render 
the line y=mx+b into 
this array, adding one at 
each cell

• Questions
– how big should the cells 

be? (too big, and we 
cannot distinguish 
between quite different 
lines; too small, and 
noise causes lines to be 
missed) 

• How many lines?
– count the peaks in the 

Hough array

• Who belongs to which 
line?
– tag the votes

• Can modify voting, peak 
finding to reflect noise.

• Big problem if noise in 
Hough space different 
from noise in image 
space.



Some pros and cons

• Run-time
– Complexity of RANSAC n*n*n

– Complexity of Hough n*d



Error behavior

• Hough handles error with buckets.  This gives a 
larger set of lines consistent with point, but ad-
hoc.

• Ransac handles error with threshold.  Well-
motivated for error in other points, but not for 
error in first 2 points.
– But works if we find some 2 points w/ low error.

• Error handling sloppy -> clutter bigger problem.
• Many variations to handle these issues.



Pose: Generalized Hough 
Transform

• Like Hough Transform, but for general 
shapes.

• Example: match one point to one point, 
and for every rotation of the object its 
translation is determined.

• Example: match enough features to 
determine pose, then vote for best 
pose.



Correspondence: Interpretation 
Tree Search

• Represent all possible sets of matches as 
exponential sized tree.

• Each node involves another match
• Wildcard allowed for no matches.
• Prune tree when set of matches incompatible 

(this seems to imply bounded error).
• Trick: some fast way of evaluating 

compatability.
• Trick: different tree search algorithms.  Best 

first.  A*….



2D Euclidean Transformation

• Check pairwise compatibility
– Fast

– Conservative test
a

m

n



Cass: Correspondence pose 
duality

• Suppose we match two features with 
bounded error.
– There is a set of transformations that fit.
– For nm matches, nm sets.  
– As these intersect, they carve 

transformation space into regions.
• Within a region, feasible matches are the same.
• If sets are convex, #regions is limited.
• If everything is linear, this becomes easier.



Example: points, 2D translation
L-infinity norm



• Every cell is bounded by axial lines.

• Must contain point where two lines intersect.

• No more than (nm)2 cells.

• If we sample points where all pairs of lines 
intersect, we sample all cells.



General case

• Can extend to any linear transformation and 
convex, polygonal error bound.

• Every model point and every error line lead to 
hyperplane in transformation space.

• These divide transformation space into 
convex cells.  Each has vertices at 
intersection of d hyperplanes.

• Complexity (mn)d



Summary

• All these methods exponential in 
dimension of transformation.

• Clever & effective for translation, 2D 
euclidean.

• Too slow for 3D to 2D recognition
– This is why Lowe used grouping.


