
Wavelets 
 
We’ve discussed two ways of representing images.  Pixels are spatially localized, but 
they don’t capture frequency information.  The Fourier transform captures frequency 
information, but it is not spatially localized.  We want something that is localized in 
space and frequency. 
 
Windowed Fourier Transform 
 
Multiply the signal by a windowing function, and then take the Fourier transform.  This 
window slides over the signal, so a 1D signal is described with 2 degrees of freedom, 
translation and frequency.  One way to do this is by multiplying a harmonic by a 
Gaussian, and then convolving with that.  We note that this is spatially localized because 
of the Gaussian.  Let’s look at this by taking a Fourier transform.   
 
w(x) = h(x)g(x) 
 
w is a windowed harmonic, where h is a harmonic function (sin or cos of some 
frequency) and g is a Gaussian.  Denoting Fourier transforms with capitals, we have, 
from the convolution theorem: 
 
W(u) = H(u)*G(u), 
 
where u is frequency.  The transform of a Gaussian is a Gaussian, the  transform of a 
harmonic is a delta function.  So convolving a Gaussian with a delta just shifts it.  This 
means the windowed harmonic is localized in space and frequency.  And just like a 
Gaussian, the more localized it is in one domain, the less localized it is in the other 
domain.   
 
This is called a Gabor function, and is in some sense the function that is optimally 
localized in space and time.  The Heisenberg uncertainty principle says that it is 
impossible to have a function that is perfectly localized in space and time.  Gabor 
functions are used as a model of neurons in the early visual system. 
 
We can represent an image by convolving it with Gabors of different location and 
frequency.  One disadvantage of this simple scheme is that we are fixing the scale of the 
Gaussian, but we want to capture image events that occur at different scales.  The 
intuition is that high frequencies can occur at very fine scales, but low frequency events 
occur at coarser scales.  So we vary the scale together with the frequency. 
 
Wavelets 
 
Wavelets will scale as the frequency changes.  We do this with a function, , the mother 
wavelet.   integrates to 0 and has a norm of 1.  Then we can translate (t) by u by 
taking (t-u).  We scale by taking  u,s=1/sqrt(s) ( (t-u)/s).  The 1/sqrt(s) is there so 
that the function still integrates to 1.   



 
As an example, we will use the Haar wavelet, which is not necessarily the best, wavelet, 
but is certainly the simplest.   
 
 (t) = -1 if 0<=t<=1/2 
 (t) = 1 if ½<=t<=1 
 
Then, for example, 1/sqrt(s) (t-u/s), with s = 2, is: 
 
 (t) = -1/sqrt(2) 0<=t<=1 
 (t) = 1/sqrt(2) 1<=t<=2,  
 
We can see that this still has a norm of 1 because  squared is ½ between 0 and 2. 
 
Wavelet Transform 
 
This is the continuous case, sort of like the Fourier transform.  For all u, s we take: 
 
<f,  u,s > 
 
This represents a 1D function f with a 2D set of values.  This redundancy occurs because 
the wavelets are not orthogonal, so they form a redundant basis.  One idea is that this will 
give us a big response for scales and locations where there is a lot of energy, ie., a 
localized frequency.  There is also a nice theorem that states that: 
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where k is some constant.  This is very much like the formula used to reconstruct a signal 
from its Fourier transform, and is like saying that a function is a linear combination of 
harmonics, in the fourier transform. 
 
However, there is one big difference.  In the Fourier transform, the harmonics form an 
orthonormal basis.  This is not the case with the wavelet transform.  This is because even 
though two cosine functions may be quite similar, since they are infinite, they ultimately 
go through all states of being in and out of phase.  Since wavelets are spatially localized, 
this is not the case.  This is particularly easy to see with the Haar wavelet. 
 
Othonormal Basis of Wavelets 
 
So, it is useful to construct an orthonormal basis of wavelets.  To do this, we don’t take 
the wavelet at all scales and translations, but just at a discrete set of them that are 
orthonormal.  The idea is that we shift each wavelet enough so that it is orthogonal to the 
others, and scale it enough so that it is orthogonal.   
 



Example:  Haar wavelet.  We translate it in units of 1, and scale it by factors of 2.  It is 
easy to verify that these are orthonormal. 
 
Next, we need to show that this can be a basis for all functions.  We will do this in a way 
that also demonstrates how we can efficiently take the transform.  Our strategy is to 
isolate the high frequency information, and represent it with an orthonormal basis of fine 
scale wavelets.  Then we can repeat this at coarser scales.  But we can also shrink the 
signal, so that performing this at coarse scales is more efficient.   
 
Suppose S is an arbitrary, reasonable function.  We want to show that we can 
approximate it arbitrarily well as a linear combination of Haar wavelets.  First, we can 
approximate f arbitrarily well with a piecewise constant function where the pieces are all 
the same width, k.  This approximation is the one we use to take the Riemann integral, 
and we have similar requirements on the function f. 
 
Next, we’re going to begin our approximation with Haar wavelets that have a width of 
2k.  Let’s consider the first part of f, assuming these two pieces have heights of a and b.  
If we take the inner product of this with a Haar in the same position we have (b-a)/2.  So 
that means we’re approximating that part of the signal with a function that is: 
 
-(b-a)/2  and then (b-a)/2.   
 
If we subtract this from f, we get 
 
(b+a)/2 and then (b+a)/2.   
 
So the residual function is constant over a range with a width of 2k. 
 
This means that by projecting f onto the Haar’s at the finest level, we’re left with a 
function that is one level coarser.  At some point, we’re left with a constant function.  If 
we keep going, we get a bigger and bigger constant function that has a smaller and 
smaller amplitude.  The sum of the square of this converges to 0. 
 
Notice that when we move to a coarser scale, we could just shrink the whole function by 
a factor of 2.  This means the work we do at each scale is half that at the previous scale.  
This should sound familiar. 
 
Some other points 
 
It is important to know that there are many types of wavelets, which have more desirable 
properties than Haars.  First, the fact that the Haar wavelet isn’t smooth is often a bad 
thing.  We can get smoother wavelets.  Second, the Haar is maximally localized in space.  
This makes intuitive sense, since it drops to zero so quickly.  But this means that it is 
minimally localized in frequency, compared to other wavelets.  Often, we would want 
more of a compromise.  
 



Even if a set of wavelets is not orthonormal, it can still be a frame, which has many 
desirable properties.  If wavelets form a frame, we can reconstruct a signal from its 
projection onto the frame.  This is analogous to saying that the wavelets form a redundant 
basis. 


