
Problem Set 1 Due: Tuesday, October 11, 3:30pm.

1. Suppose we have an input vector with six elements: x = (x1, x2, x3, x4, x5, x6).
We compute the function:

f(x) = sigmoid

(
log

(((
max(x1, x2) ∗

x3

x4

)
− (x5 + x6)

)
∗ 5

)
+

1

2

)
What is the value of f(x) when x = (5,−1, 6, 12, 7,−5)? Using the chain rule,
compute the gradient of f(x) for this value of x.

2. The next problems involve classification. We will suppose that there are K
classes. Each class consists of elements drawn from a Gaussian distribution in a
d-dimensional space. Both training and testing data should be drawn from these
distributions with equal likelihood (eg., just use the same number of samples
from each class). Unless we say otherwise, we assume that each distribution has
the identity matrix as its covariance matrix.

We will ask you to implement neural networks to perform classification. For this
assignment, the networks should be fully connected. You should be able to do
this assignment using Matconvnet (http://www.vlfeat.org/matconvnet/), which is
easy to install, or LightNet (discussed in class). You should be able to keep
the size of your networks and training data small enough so that you can run
experiments on a normal laptop. If you wish to use a different environment for
neural networks (eg, Caffe, Torch....) that is fine, but the TAs will only support
Matconvnet or LightNet.

These questions are pretty open-ended. It is part of the assignment for you to
determine a good way to make them specific. As an example, you may need to
determine whether a network of a particular size can solve a particular problem.
You have to decide how you can tell whether a network is solving a problem.
To do this, you will need to make some reasonable choices about how much
training data to use, how long to train the network, and how to measure success.
You might, for example, try training the network many times, and see how often
the error on a test set is reduced below some threshold. As another example, you
will have to figure out how big the input space should be (ie, what is d) to get an
interesting result. Try to explain the choices that you have made.

(a) Suppose we have two classes (K = 2), and that the mean values of the
classes are separated by a distance of 10. Train a three-layer network that
has one hidden layer with H units to perform classification. Describe fully
the architecture that you used, including the loss function. Describe how
the performance of the network varies with H , for some suitable measure
of performance.

(b) Given the conditions of Problem 2a, find some value of H and some amount
of training data for which the you can overfit the data. That is, create a
situation in which the training error becomes very small, but the error on a
test set is still very high. Describe the choices you needed to make to create
this situation.
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(c) This is not a programming problem, but a paper and pencil exercise. What
is the expected error of a Bayes optimal classifier on the problem 2a? How
does this error vary if we vary the distance between the means of the two
classes? Be explicit; give an equation showing the error as a function of the
distance.

(d) Next, consider Problem 2a, but allow the distance between the means of
the two classes to vary. As in that problem, we want to train a three-layer
network to perform classification. Of course, we cannot expect to acheive
classification results that are better than the Bayes optimal classifier. But
if we want to train a network to get near this point, does this become more
difficult as the distance between the classes varies? If yes, provide a quan-
titative estimate of this. That is, provide a graph showing how the difficulty
varies with distance, for some suitable measure of difficulty.

(e) Next, consider this problem when the two classes do not have the same
covariance matrix. Suppose, for example, one class has a covariance matrix
that is the identity matrix, and the other has a covariance matrix that is two
times the identity matrix. How would this change the results of the previous
problem.

(f) Now, suppose that we vary K, the number of classes. Do this by choosing
the mean of each class from a suitable uniform distribution. How many
hidden units, H , do you need to achieve good classification results? How
does this vary with K or with d, the dimension of the space? Display at
least one graph showing how the number of hidden units needed varies with
the number of classes.

(g) Suppose that for problem 2f you are allowed to use a deeper network. Does
using a deeper network allow you to solve the problem with fewer overall
weights in your network? It may be difficult to answer this question defini-
tively, so try to formulate some reasonable set of experiments to consider
it.

(h) Consider Problem 2g, but this time suppose that the elements of the classes
are restricted to lie in a m-dimensional linear subspace, with m << d.
So the means of the classes will lie in this subspace, and the covariance
matrices will have rank m, and be chosen so that the covariance is zero
outside this subspace. Does the benefit of using a deep network change
compared to your answer to Problem 2g?
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