
Problem Set 1
CMSC 828L

Due: 9/25/18, 12:30 pm (start of class)

The purpose of this problem set is for you to implement backpropagation from
scratch. You will use your results to experiment with some simple networks on simple,
synthetic data sets, to get a feeling for what it is like to tune your networks. A useful
guide to the techniques needed can be found in Neural Networks and Deep Learning,
Chapters 2 and 3. It is easy to find code for backpropagation on line, but I strongly
urge you to write your own code, without referring to others.

The first two problems are warm-up exercises. Then you will be asked to implement
more general, fully connected networks. You could skip right to implementing general
networks, and use these to solve the first two problems. However, solving the first two
problems in a more limited way will help build your intuitions.

For each problem, you will implement the ability to train and apply the network.
Training adjusts the weights and bias terms with gradient descent. You do not need to
implement stochastic gradient descent (that is, at each step, compute the full gradient
using all the training examples). During training, you can use a single parameter, η, to
control the step size. That is, the new weights and bias equal the old weights and bias
minus the gradient times the step size.

All your networks can be limited to having a single output unit. However, you
should be able to handle an arbitrary number of input units, and an arbitrary number of
hidden units in each layer.

You should electronically submit a single zip file using ELMS. The name of the file
should have the form: Lastname Firstname PS1.zip. You should implement this using
Python. All linear algebra operations, or any related operations should be performed
using numpy. You will need to submit both code and a written description of your
work, including figures. You can do this in two ways. You can use Jupyter notebooks
for your submission. Or you can submit your Python code along with a pdf containing
your write-up.

Your write-up should be self-contained, so that reading it allows us to understand
your approach and experiments. In many cases, the problems below require you to
design your own test data. Explain how you did this and why, illustrating what you
did with figures where appropriate. If we can’t figure out what you did from reading
the write-up, you will not get a good grade; we shouldn’t have to look at your code
to know what you did. At the same time, running your Python code should generate
all the figures and tables contained in your write-up. Your code should be runnable
separately for each subproblem. For example, your code can contain a main function
that takes as an argument the problem number.

1. This network contains an input layer and an output layer, with no nonlinearities.
The output is just a linear combination of the input. Specifically, We can denote
the input values by :

a01, a
0
2, ..., a

0
d

1

Then the output will be given by:

a11 =

d∑
k=1

w0
1ka

0
k + b11

Use a regression loss to train the network. That is, the loss would be:

n∑
i=1

1

2
(yi − a11(xi))2

where a11(xi) denotes the activation of the output unit when the input is xi. Write
code to train this network and to apply it to data.

Tests: Perform the following tests to validate your code. The main hyperparam-
eters for your code are the step size and number of iterations of gradient descent
that you perform. You may have to play with these to get a good result. There
are also implicit hyperparameters that determine how you initialize the weights
and bias of the network.

(a) Generate some random 1D test data according to a simple linear function,
with Gaussian noise added. For example, your data might be generated
with: y = 7x + 3 + ξ, where ξ is a Gaussian random variable. Include a
plot showing the training data and the function that your network computes.
(You can plot the function by evaluating it on a range of different inputs).
This is all 1D, so easy to visualize.

(b) Perform a similar experiment using higher-dimensional input. Demonstrate
that your trained network is computing a reasonable function by evaluating
it on some held-out test data, and comparing the computed values to ground
truth values.

(c) How difficult was it to find an appropriate set of hyperparameters to solve
this problem?

Your write-up should include plots and tables as needed to visualize your results.
It should include a clear description of how you generated the training data, and
explicit answers to all of the questions listed above.

2. A Shallow Network

Now implement a fully connected neural network with a single hidden layer, and
a ReLU nonlinearity. This should work for any number of units in the hidden
layer and any sized input (but still just one output unit). This means:

z1j =

d∑
k=1

w1
jka

0
k + b1j

and
a1j = max(0, z1j)

2

The ouptut unit is:

a21 =

d∑
k=1

w2
1ka

1
k + b21

as there is no non-linearity at the output layer. You can continue to use a regres-
sion loss in training the network.

Tests: Perform the following tests to validate your code. You now have another
hyperparameter, the number of hidden units.

(a) 1D. Generate training data from a simple 1D function, such as a sine wave.
You do not need to add noise to the function. Train your network to fit
this data. Turn in a plot that shows the training data, along with a curve
showing the function that your network computes.

(b) Perform a similar experiment using higher-dimensional input. Demonstrate
that your trained network is computing a reasonable function by evaluating
it on some held-out test data, and comparing the computed values to ground
truth values.

(c) How difficult was it to find an appropriate set of hyperparamters to solve
this problem? Do you notice any difference in the difficulty of solving the
1D problem and solving the higher dimensional problem?

Again, your write-up should include explicit answers to each question, along
with graphs and tables needed to demonstrate your results.

3. General, Deep Networks

Now, write more general code to handle a fully-connected network of arbitrary
depth. This will be just like the network in Problem 2, but with more layers.
Each layer still has a ReLU activation function, except for the final layer.

(a) Test your network with the same training data that you used in Problem 2,
using both 1D and higher dimensional data. Experiment with using 3 and
5 hidden layers. Evaluate the accuracy of your solutions in the same way
as Problem 2.

(b) Play around with different choices of hyperparameters. Based on your ex-
perience, do you think it is easier or harder to choose effective hyperparam-
eters for a deeper network than for the shallow network? Explain?

(c) Do some experiments to determine whether the depth of a network has
any significant effect on how quickly your network can converge to a good
solution. Include at least one plot to justify your conclusions.

4. Cross-Entropy Loss

Now modify your network for classification instead of regression. You will use a
cross-entropy loss, with a logistic activation. Previously, there was no activation

3

function in the output layer, so aL1 = zL1 for a network with L layers. Now,
instead you will have:

aL1 =
1

1 + e−zL
1

where aL1 denotes the (only) unit in the output layer. This converts the output
into a value between 0 and 1, which can be interpreted as the probability that the
input belongs to class 1. Then, use a loss of:

−
n∑

i=1

yi log(a
L
1 (xi)) + (1− yi) log(1− aL1 (xi))

Here we are assuming that the label, yi, is a binary value (0 or 1), so either yi or
1− yi is equal to 0, and the other value is 1.

Tests:

(a) Test your network with two 1D problems; that is, your input is just a scalar.
First, choose two sets of points that are linearly separable. Vary the margin
between the points and the number of layers in the network. Is it more dif-
ficult to find hyperparameters that solve a problem with a smaller margin?
Does the speed with which the network converges to a good solution de-
pends on the margin? Include a plot to support your answer to the second
question.
Second, test your network with some 1D data that is not linearly separable.
What differences do you observe?

(b) Repeat these experiments, using higher dimensional data. Again, select
data that is linearly separable, and then select data that is not linearly sepa-
rable. Include data to support your conclusions.

5. Challenge Problem. This problem can be done for extra credit.

Convolutional Neural Networks (CNNs). Implement convolutional networks for
a 1D vector of inputs of arbitrary length. You can think of the input as a 1D
signal or image. We haven’t yet talked about CNNs, so you may need to do a
little research. But here is a brief description. We will consider a CNN that has
an input layer, then a single filter followed by ReLU. The activations that result
from ReLU are then fully connected to the output.

We can consider this CNN to be just like the shallow network above, with two
additional constraints. So we have:

z1j =

d∑
k=1

w1
jka

0
k + b1j

a1j = max(0, z1j)

a21 =

d∑
k=1

w2
1ka

1
k + b21

4

However, the network has an additional integer parameter, K. We say the filter
width is 2K + 1. Any weight w1

jk for which |j − k| > K is always set to 0. Do
not update this weight using gradient descent. It must always remain 0. Second,
we have weight sharing, so that:

w1
j1k1

= w1
j2k2

whenever j1 − k1 = j2 − k2 and |j1 − k1| ≤ K. These weights must be
initialized to be equal, and when you perform gradient descent, treat them as
a single weight. So the weights that connect the input to the first hidden layer
really have only 2K + 1 different values.

Devise a problem for which this network is appropriate. That is, come up with
some data that your network can learn to correctly label. Demonstrate that your
implementation works effectively on this data.

• For additional credit, implement max pooling, and demonstrate the correct-
ness of your implementation.

• For even more credit, implement all components of LeNet-5, and demon-
strate performance on Mnist digit data.

5

