
Belief Net 
 
Intuitively, one problem with the simple version of relaxation labeling that I’ve sketched 
is seen if we have two lines, A and B, that support each other.  At one iteration, A 
supports B.  At the next, B supports A.  When this happens, A is getting support for its 
being figure that really originates in A itself.  It would be better if we could tell the 
difference between B seeming to be figure because of A’s support, or support from 
another source.  Belief nets formalize probabilistic support.  Belief propagation is an 
algorithm that performs inference according to this probabilistic support.    
 
********  This part omitted in ‘06 
 
First, a belief net is a graphical representation of a set of random variables that makes 
explicit some properties about causality and conditional independence.  As an example, 
suppose we have a house alarm.  It can be set off by a burglar or an earthquake.  If it goes 
off, a neighbor, Sally or John, might call you.  The arrows show casuality.  Conditional 
independence is also indicated; given that the alarm goes off, Sally and John calling are 
independent events.  They’re not independent if we don’t know whether the alarm went 
off.  The parent nodes have a different structure; the earthquake and burglary are 
independent if we don’t know whether the alarm went off, but are not independent if we 
do know.  That’s because if the alarm goes off, knowing there was an earthquake effects 
my assessment of whether there was a burglary.  To make this precise, we have to know 
the conditional probability of every variable, based on its causes. 
 
We’re going to talk about one simple algorithm for performing inference in these nets, 
that of belief propagation.  Inference means that we are given some knowledge about the 
value of some variables, and want to determine the value of others.  For example, in 
vision, we might know that some positions and orientations in the image have a contour 
going through them, and want to know whether others do.  Though this algorithm is 
simple, it’s very elegant and useful. 
 

 
We now look at how one would really perform correct probabilistic inference in an 
image.  We first look at the 1D case, which is substantially easier than the 2D case.  
Suppose we have an image that we think is piecewise constant, corrupt by noise.  Then 
the noisefree intensity at each pixel depends on the observed intensity at that pixel, and 
also on the rest of the image.  We make a Markov assumption that the true intensity of a 
pixel only directly depends on its observed intensity, and the true intensity of its 
neighbors, and is conditionally independent of everything else.  This is what we would 
get if we generate an image by deciding independently at each pixel, whether to copy the 
previous pixel or jump to a new value, and then corrupting this with independent noise. 
 
We describe this with a chain of variables that represent the true intensities 
 
X1 -> X2 -> … Xn 
 



And corresponding variables, yk, that indicate the observations.  Collectively, we call all 
these e, for evidence.  We want to compute the distribution of the true intensity at each 
pixel, conditioned on the observations.  We do this by breaking the evidence into separate 
parts, which can all be handled independently. 
 
Let’s start with the simplest case, which will solve half the problem for us.   
 
P(xn | e) = P(e/xn) P(xn) / P(e). 
 
P(e) is the same for all values of xn; it’s just a normalizing constant.  So we can ignore it, 
and then normalize the values we get so they sum to one.  P(xn) is the prior on xn. 
 
P(e|xn) = P(e^- | xn, yn)*P(yn|xn) 
 
e^- is defined to be all evidence to the left of xn.  P(yn | xn) comes from our noise model, 
we assume we know all conditional probabilities. 
 
P(e^- | xn, yn) = P(e^- | xn) \def \lambda(xn). 
 
We compute this by taking advantage of conditional independence.  If we knew xn-1, xn 
would then be independent of e^-.  We don’t know this, but we can sum over all 
possibilities: 
 
\lambda(xn) = \sum_xn-1  P(e^- | xn, xn-1) * P(xn-1 | xn) 
 
P(e^- | xn, xn-1) = P(e^- | xn-1) = \lambda (xn-1) * P(yn-1 | xn-1) 
 
If we write P(xn-1 | xn) as a matrix,  M_{xn-1 | xn} we get 
 
\lambda(xn) = M_{xn-1 | xn} \lambda (xn-1) * componentwise multiplication with P(yn-
1 | xn-1). 
 
So we can compute probabilities recursively, starting at the left and working our way 
right. 
 
If we want to handle a pixel that is not on the end, we can do this in much the same way, 
combining evidence from the left and from the right. 
 
P(xk | e) = P(e^- | xk, yk, e^+) P(yk | xk, e^+) P(xk | e^+) * (P(e^+)/P(e)) 
 
The first term is just \lambda(xk).  The second is the data term, P(yk|xk).  The last is the 
normalizing constant.  So we just need to figure out how to compute: 
 
P(xk | e^+)  \def  \pi(xk) 
 
This is almost the same deal as \lambda(xk).  We get: 



 
\pi(xk) = \sum_{xk+1}  P(xk | xk+1, e^+) P(xk+1 | e^+) P(yk+1 | xk+1) 
 
Again, the main computation is M_{xk | xk+1)*\pi(xk+1). 
 
So our overall strategy is to pass information to the left and right, adding evidence as we 
go, and finally combine these by multiplying evidence from the left and right.  


