
Belief Net

Intuitively, one problem with the simple version of relaxation labeling that I’ve sketched
is seen if we have two lines, A and B, that support each other. At one iteration, A
supports B. At the next, B supports A. When this happens, A is getting support for its
being figure that really originates in A itself. It would be better if we could tell the
difference between B seeming to be figure because of A’s support, or support from
another source. Belief nets formalize probabilistic support. Belief propagation is an
algorithm that performs inference according to this probabilistic support.

******** This part omitted in ‘06

First, a belief net is a graphical representation of a set of random variables that makes
explicit some properties about causality and conditional independence. As an example,
suppose we have a house alarm. It can be set off by a burglar or an earthquake. If it goes
off, a neighbor, Sally or John, might call you. The arrows show casuality. Conditional
independence is also indicated; given that the alarm goes off, Sally and John calling are
independent events. They’re not independent if we don’t know whether the alarm went
off. The parent nodes have a different structure; the earthquake and burglary are
independent if we don’t know whether the alarm went off, but are not independent if we
do know. That’s because if the alarm goes off, knowing there was an earthquake effects
my assessment of whether there was a burglary. To make this precise, we have to know
the conditional probability of every variable, based on its causes.

We’re going to talk about one simple algorithm for performing inference in these nets,
that of belief propagation. Inference means that we are given some knowledge about the
value of some variables, and want to determine the value of others. For example, in
vision, we might know that some positions and orientations in the image have a contour
going through them, and want to know whether others do. Though this algorithm is
simple, it’s very elegant and useful.

We now look at how one would really perform correct probabilistic inference in an
image. We first look at the 1D case, which is substantially easier than the 2D case.
Suppose we have an image that we think is piecewise constant, corrupt by noise. Then
the noisefree intensity at each pixel depends on the observed intensity at that pixel, and
also on the rest of the image. We make a Markov assumption that the true intensity of a
pixel only directly depends on its observed intensity, and the true intensity of its
neighbors, and is conditionally independent of everything else. This is what we would
get if we generate an image by deciding independently at each pixel, whether to copy the
previous pixel or jump to a new value, and then corrupting this with independent noise.

We describe this with a chain of variables that represent the true intensities

X1 -> X2 -> … Xn

And corresponding variables, yk, that indicate the observations. Collectively, we call all
these e, for evidence. We want to compute the distribution of the true intensity at each
pixel, conditioned on the observations. We do this by breaking the evidence into separate
parts, which can all be handled independently.

Let’s start with the simplest case, which will solve half the problem for us.

P(xn | e) = P(e/xn) P(xn) / P(e).

P(e) is the same for all values of xn; it’s just a normalizing constant. So we can ignore it,
and then normalize the values we get so they sum to one. P(xn) is the prior on xn.

P(e|xn) = P(e^- | xn, yn)*P(yn|xn)

e^- is defined to be all evidence to the left of xn. P(yn | xn) comes from our noise model,
we assume we know all conditional probabilities.

P(e^- | xn, yn) = P(e^- | xn) \def \lambda(xn).

We compute this by taking advantage of conditional independence. If we knew xn-1, xn
would then be independent of e^-. We don’t know this, but we can sum over all
possibilities:

\lambda(xn) = \sum_xn-1 P(e^- | xn, xn-1) * P(xn-1 | xn)

P(e^- | xn, xn-1) = P(e^- | xn-1) = \lambda (xn-1) * P(yn-1 | xn-1)

If we write P(xn-1 | xn) as a matrix, M_{xn-1 | xn} we get

\lambda(xn) = M_{xn-1 | xn} \lambda (xn-1) * componentwise multiplication with P(yn-
1 | xn-1).

So we can compute probabilities recursively, starting at the left and working our way
right.

If we want to handle a pixel that is not on the end, we can do this in much the same way,
combining evidence from the left and from the right.

P(xk | e) = P(e^- | xk, yk, e^+) P(yk | xk, e^+) P(xk | e^+) * (P(e^+)/P(e))

The first term is just \lambda(xk). The second is the data term, P(yk|xk). The last is the
normalizing constant. So we just need to figure out how to compute:

P(xk | e^+) \def \pi(xk)

This is almost the same deal as \lambda(xk). We get:

\pi(xk) = \sum_{xk+1} P(xk | xk+1, e^+) P(xk+1 | e^+) P(yk+1 | xk+1)

Again, the main computation is M_{xk | xk+1)*\pi(xk+1).

So our overall strategy is to pass information to the left and right, adding evidence as we
go, and finally combine these by multiplying evidence from the left and right.

