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Introduction

Determination of local image properties

- Smoothing/Diffusion

- Edge Detection

- Color

- Texture

Inference of scene description

Semantic analysis and interpretation

Convert low level data into objects and scene description

- Boundaries
- Regions
- Surfaces
- Objects



4

Boundary-based segmentation

n Boundary-based approaches 

q Often sufficient to separate objects from background

q Treats properties such as smoothness very naturally

q Structural saliency is a property of the structure as a whole
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Region-based segmentation

n Region-based methods consider distinguishing local 
properties, such as color and texture.

n We will look at an approach that can combine 
features of region- and boundary-based approaches.
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Saliency network (Shashua & Ullman, 1988)

n Proposed a measure that evaluates the “saliency” of a 
curve
q The measure monotonically increases with the length of the 

evaluated curve

q Decreases monotonically with the energy (the total squared 
curvature) of the curve

q Perform gap completion on fragmented curves

n Defined the “saliency map” of an image to be an 
image in which the intensity value of each pixel is 
proportional to the score of the most salient curve 
starting from that pixel.

n Considered it as a useful pre-attentive step
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Local orientation of saliency network

n Local connectivity of Shashua and Ullman’s Saliency Network

n Saliency network illustrated using only 8 orientations
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Saliency of a curve

n The saliency of a curve ΓΓΓΓ of length N+1 is defined by

where

and

and
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Saliency of an element

n The saliency of an element pi

n C(i) is the set of all curves starting from pi. So |C(i)| = kN.

n Shashua & Ullman explicitly assumed extensibility in the 
solution to reduce this search space to kN.

n Is this assumption always valid?
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Saliency of an element

n The saliency of an element pi computed by recurrence

n If the extensibility assumption is true, this solution is optimal 
over all curves that are less than or equal to N elements long 
by Shashua and Ullman’s saliency measure.
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Analysis of saliency network

n Alter and Basri (1998) introduced a continuous version of 
saliency function

where

n Given a curve ΓΓΓΓ that consists of two concatenated sections ΓΓΓΓ1

and ΓΓΓΓ2
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Convergence & complexity

n Cycles are considered curves with infinite lengths

n Convergence is guaranteed for cycles

n The time complexity is O(p2k2). 

n Overall, saliency network is efficient as it searches 
exponential space of possible curves in polynomial 
time
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Issues with saliency network

n Problems with the extensibility assumption

q The network must make a single choice at every 
junction

q Serious problem in extracting more than one object 
contour

q Subject to discretization problem

q Restrict the set of functions that can be possibly used 
as saliency measure

q Other more implicit issues:

n How to weight between length and smoothness? 
Shashua & Ullman used ρ = 0.7.

n Not scale invariance

n Large gap vs. small gaps with same total length
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How to combine region with boundary

n Getting a globally optimal grouping of contours 
based on selective boundary measures is difficult

n If we further assume that the interested regions are 
closed, how to incorporate region features with 
boundaries?

n Two questions are key

q A functional form that allows both region-based and 
boundary-based features to be globally optimized

q Efficient algorithms to find solutions to such global 
optimization problem
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Global optimal regions and boundaries

n Jermyn & Ishikawa (ICCV’99) proposed a general 
energy functional in the form

where R denotes a region and ∂R is its boundary

n f can be any real-valued function in the image space.

n The numerator is a measure of the “flow” into or out of 
the region. 

n The denominator is a generalized measure of the length 
of the boundary and also functions as a smoothing term

n The solution to this optimization problem gives the 
global maximum of E over all possible regions R.
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Global optimal regions and boundaries

n If function f in the numerator can be expressed as the 
divergence of some vector function    , i.e.                 
The energy functional can be rewritten as

n Equation (2) allows us to include both boundary and 
region information in our model

n Averaging the weight of the boundary over a measure 
of its length seems to have two advantages

q Remove certain dependency on contour length

q Able to find the minimum mean weight cycle using 
algorithm that runs in polynomial time

A
�
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Global optimal regions and boundaries

n Is the energy functional general enough?

n In fact, f in equation (1) can be any integrable function. 
In particular, it can be the convolution of the image 
with any filter F: f(p) = I ∗ F(p)

n In other words, we can find closed regions with 
specific properties by smartly choosing the right f

n f = I ∗∗∗∗ G : Globally maximum intensity regions. 

n f = I ∗∗∗∗ G : Region with the largest absolute value of 
the integrated Laplacian of the smoothed intensity.

n |f = I ∗∗∗∗ G|: Contrast-reversing region

n |f = I ∗∗∗∗ G|-1 : Globally most homogenous intensity
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Global optimal regions and boundaries

n Example using a synthetic image

2∇
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f = I ∗∗∗∗ G |f = I ∗∗∗∗ G|
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Global optimal regions and boundaries

n Still have to show how to cast the problem into a 
minimum mean weight cycle problem

n Maximizing energy in (1) and (2) is equivalent to 
minimizing the whole thing without modulus sign in 
two possible orientation of contour integration.

n We transform the energy minimization problem edge 
into a minimum mean weight cycle problem on a 
directed graph

n Look at the whiteboard
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Global optimal regions and boundaries
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Conclusion

n Saliency network is an efficient mechanism for 
directing attention to a single object based on length 
and smoothness. 

n Its extensibility structure greatly restrict the set of 
functions that can be used as saliency measure.

n Global optimal regions and boundaries is a more 
flexible and general approach when dealing with 
closed contours. 

n For grouping contours by semantic content, global 
optimization is generally not sufficient. High-level 
knowledge that gives local constraints are unavoidable. 
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Question?


