
Edge Detection

We’ve discussed smoothing and diffusion as a way of getting rid of the effects of noise in
an image. Now we’re going to discuss the problem of finding the boundaries between
piece-wise constant regions in the image, when these regions have been corrupted by
noise. While edge detection is an ill-defined problem, we will consider edge detection
with the following assumptions:

 An edge is a rapid change or discontinuity
 It is based on image properties (if a scene discontinuity fails to appear in the

image, we won’t find it)
 We only consider changes in intensity in gray-scale images (e.g., no color or

texture)
 We only consider local image properties
 An edge may occur at different scales

As usual, we will begin by considering a 1D problem. But in the case of edge detection,
we’ll also have to discuss the 2D problem, because there are some issues that arise in 2D
that don’t show up in 1D.

1D Edge Detection

1D edge detection consists of three, key steps.

1) Reduce the effects of noise.
2) Measure the magnitude of change in the region.
3) Find peaks of change

a. Non-maximum suppression
b. Thresholding

The logic of this is that we of course need to avoid the effects of noise, and then we need
to measure the amount of change in intensity in the image, so that we can find places
where intensity is changing rapidly. We want to find peaks, because in the neighborhood
of an edge, after smoothing, there may be many pixels where the image is changing
rapidly, but we only want to identify one of them as the edge.

We have already discussed (1), reducing the effects of noise with smoothing. We also
need to consider how to do convolution discretely. We use a discrete analog to the
convolution equation:

M

-Mj

j)g(j)-f(kh(k)

becomes

du)u(g)ut(f)t(h

One way to do this is to sample the filter (eg., sample the values of a Gaussian at some
discrete points). One must be careful about two things:

1. Normalize the sampled Gaussian, so that it sums to 1.

2. Be sure to use a wide enough filter to capture the Gaussian shape. This is done
heuristically, but is important. A good rule of thumb is to sample all values
within 3 of 0.

We mention that Canny has considered the question of finding the optimal way to smooth
a noisy step edge in order to find edges, and has found that the optimal smoothing
function is approximately a Gaussian. Canny defined optimality by defining some
reasonable criteria, such as accurate localization and lack of false positives.

We also mention that it is particularly important to reduce the effects of noise before
taking a derivative. One way to justify this is to note that white noise has a uniform
power spectrum, while scene structure is usually more low frequency than high
frequency. A derivative is a high-pass filter (the derivative of cos(kt) is –ksin(kt)). So
the derivative preserves the noise much more than the structure. The way to avoid this is
to low-pass filter the image first, which removes noise much more than it removes
structure.

(2) in 1D, it is easy to measure the amount of change. The way that we measure change
is by taking a derivative. Note that this can be done discretely, by convolution with a
filter such as [1 -1] or [1/2 0 -1/2], which compute the Taylor series expansions to the
derivative.

(3) Finding peaks is also simple. 1) We look for points where the magnitude of the
derivative is bigger than at the two neighboring points. (We could also look for places
where the second derivative is 0, although this is slightly trickier in the discrete case).
This is called non-maximum suppression and is equivalent to finding the place where the
first derivative is a maximum. 2) We also look for peaks where the magnitude of the first
derivative is above some threshold. This eliminates spurious edges.

This provides a solution to the problem of finding piecewise-constant regions corrupted
by noise. Some further comments:

 We saw that smoothing never introduces new extrema. It also doesn’t introduce
new extrema in the first derivative, that is, new edges. It does eliminate edges.
As we smooth more and more, neighboring regions start to merge together.

 This means that there is a trade-off between our ability to eliminate noise, and our
ability to locate small regions.

 It also means that smoothing doesn’t just eliminate noise. It selects a scale at
which we will detect edges.

2D Edge Detection

We perform Edge Detection by performing essentially the same steps. However, some of
these steps will look a little different in 2D.

1) Reduce the effects of noise. This is exactly the same. We smooth with a
Gaussian. The only difference is that we use a 2D Gaussian.

a. One useful thing to note, though, is that we can decompose a 2D Gaussian
into two 1D Gaussians, which improves efficiency.

 2

2

2

2

2

22

0 2
exp

2
exp

2

1
2

exp
2

1
),(

yxyxyxG

2) Measure the magnitude of change in the region.

a. In 1D we measure change with a derivative. In 2D, we measure change
with a gradient. This is a 2d vector. We produce it by combining the
partial derivative in the x and y directions. The direction of the gradient
provides the direction of maximum change. The magnitude of the
gradient tells us how fast the image is changing if we move in that
direction.
One way to think about this is that when we take the gradient, we are just
looking at first order properties of the intensities. That means that we can
approximate the intensities as locally linear. So think of them as lying in a
plane. The gradient tells us the direction the plane is tilted, and how much
it is tilted.

3) Find peaks of change
a. Non-maximum suppression. This is a lot more complicated than in 1D.

i. We don’t just want to look at local maxima. First of all, that would
be silly, because the boundaries of objects in 2D are 1D curves,
whereas local maxima would be isolated points.
Consider a simple case of a white square on a black background.
The gradient magnitude will be constant along the edge, and will
be decreasing in the direction orthogonal to the edge.
So we look for points that are maxima in the direction of the
gradient.

ii. We must interpolate when the gradient doesn’t point directly to a
pixel.

b. Thresholding -- An innovation of Canny was to use two thresholds
(hysteresis).

i. A high threshold. All maxima with gradient magnitudes above
that are edges.

ii. A low threshold. All maxima above this are edges if they are also
connected to an edge. Note that this is a recursive definition.

Why is Canny so successful?

1. Hard to do better.
2. This might be about the best way to detect edges locally.
3. Improved over other approaches. Code distributed.

Corners

First, I want to point out that Canny can fail at corners. As an example, consider a
square. What happens to the edge as we approach the corner? What are the gradients
like? Next, how does this behavior vary depending on the angle at the corner?

So how do we find corners? This may not be too directly related to segmentation, but as
long as we’re on the topic…. One way to define a corner is to say that it’s a region in
which image gradients point in different directions. With the corner of a square, for
example, the image gradients point in orthogonal directions at the corner. So, with that
intuition, we can find corners by first taking a square region of the image and computing
image gradients at every pixel in this square. Then we perform Principal Component
Analysis (PCA) on the image gradients in this square. PCA tells us the dominant
direction of the image gradients, and the magnitude of the image gradients orthogonal to
this principal direction. If the second principal component is big, the image gradients
have a strong dominant direction, but also strong components orthogonal to that
direction. We do this by forming the matrix:

2
yyx

yx
2
x

III

III
C

where we sum over all image gradients, (Ix, Iy), in the window, and then finding the
eigenvalues of this matrix. The first eigenvalue tells us the size of the first principal
component, and the second eigenvalue gives the size of the second component. If both
are big, we have a corner.

