
Fourier Transform

1 Introduction

The next three classes are about smoothing and diffusion. We can think of these as simple ways
of spreading information around the image.

To understand these, we need to understand some technical results.

• How do we smooth an image? With convolution.

• How do we understand the effects of convolution? With the Fourier Transform.

• How do we diffuse information? This is just smoothing and convolution (in part).

2 Fourier Transform

We’ll start with the Fourier Transform. This is one effective way of representing images. To see
this, we first ask what properties a good image representation should have. But first, we back up
and look at familiar representations.

How do we represent points in 2d? Using their x and y coordinates. What this really means is
that we write any point as a linear combination of two vectors (1, 0) and (0, 1).

(x, y) = x(1, 0) + y(0, 1).

These vectors form an orthonormal basis for the plane. That means they are orthogonal
〈(1, 0), (0, 1)〉 = 0, and of unit magnitude. Why is an orthonormal basis a good representation?
There are many reasons, but two are:

1. Projection. To find the x coordinate, we take 〈(x, y), (1, 0)〉.

2. Pythagorean theorem. ‖(x, y)‖2 = x2 + y2.

The Fourier series will provide an orthonormal basis for images.

2.1 Image Representations:

To simplify, I’ll do everything in terms of a 1D function f(t), but all this extends to 2D images. We’ll
start by considering periodic functions that go from 0 to 2π, which turn out to be easier. The main
thing I’ll do to make things easier, though, is to be very sloppy mathematically, skipping precise
conditions and giving intuitions instead of complete proofs. For real math, refer to one of the
references.

We can think of our ordinary representation of functions as like the sum of delta functions.
Recall a delta function, ds(t) is 0 for t 6= s, infinite at t = s, but

∫
ds(t)dt = 1.
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f(t) =

∫ (
ds(t)

∫
ds(t)f(t)dt

)
ds

=

∫
f(s)ds(t)ds

Note that in the first line, we say that f(t) is a linear combination of scaled delta functions. The
coefficient of each delta function is found by taking the inner product between that function and
f (we take the inner product between two functions by multiplying them together and integrating.
This is the continuous version of taking the inner product of vectors by multiplying corresponding
coefficients and summing). That is, just as we find the x coordinate of a point, p, by taking the
inner product between p and (1, 0), we take the ds(t) coordinate of f by taking the inner product
between ds(t) and f .

The second line gives f(t) as an infinite sum of scaled delta functions. In a sense, these form
an orthonormal basis, but they are uncountable, which is awkward. For example, any finite subset
of them provide a poor approximation to f (or any countable subset for that matter). We can do
much better.

Another representation is familiar from the Riemann integral. Define a series of step functions
that fill the interval. That is, let:

gk,i(t) =

√
k

2π
for

2π(i− 1)

k
<= t <=

2πi

k

with gk,i(t) = 0 for other values of t.
Then gk = gk,1, gk,k provides a finite, orthonormal basis for piecewise constant functions. We

can approximate f as a linear combination of these.

f(t) ≈
k∑

i=1

aigk,i

In the limit, this approximation becomes arbitrarily good. The Riemann integral computes the
sum of the area of functions, in the limit.

If we take the union of all gk we get a countable set of functions that span a linear subspace
that gets arbitrarily close to any f(t). So we can represent any f(t) as a countable sum.

Question: f(t) has an uncountable number of degrees of freedom. How can we represent it
with a countable representation? Answer: We make some continuity assumptions. These imply
that if we know f(t) at every rational number, we can determine it at every real number, so they
reduce the degrees of freedom of f(t) to the countable.

However, the union of all gk do not provide an orthonormal basis, since they are redundant
and non-orthogonal. Later, we’ll see how a sort of variation on this basis gives us an orthonormal
wavelet basis. For now, we look at the fourier series.

2.2 Fourier Series:

The following functions provide an orthonormal basis for functions:
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√
1

2π
,

cos(kt)√
π

,
sin(kt)√

π
for k = 1, 2,

We can show these are unit vectors by integrating them from 0 to 2π. We can show they are
orthonormal by symmetry (or explicit integration).

To show they form a basis, we must show that, for any function with appropriate smoothness
conditions,

f(t) = a0 +
∞∑
1

ak cos(kt) + bk sin(kt)

That is,

lim
N→∞

∫
(f(t)− a0 −

N∑
1

ak cos(kt) + bk sin(kt))
2 = 0

Why is this true? The intuition is that we first create a series of delta-like functions like
cos2n(t/2). We show that any function can be represented by these in the same way we did
with the series gk. Then show these are linear combinations of cos(kt), sin(kt) using trigonometric
identities such as sin(t/2) =

√
(((1− cos(t))/2)) and sin2 t = (1− cos(2t))/2.

Notation. We can combine sin and cos into one complex number. eikt = cos(kt) + isin(kt). We
let k go from −∞ to ∞. This gives us a basis for complex functions (which we don’t care about
right now) and somewhat simpler notation. By proper choice of ak we can get the real fourier
series out of this. This is because if f is a real function, then ck =< f, eikt >=< f, cos(kt) > +i <
f, sin(kt) > while c−k =< f, e−ikt >=< f, cos(kt) > −i < f, sin(kt) >. So cke

ikt + c−ke
−ikt =

ak cos(kt) + bk sin(kt).
< f, eikt > and < f, e−ikt > will be complex conjugates.
Since the coefficients of an imaginary fourier series are complex, it’s often useful to discuss its

two components as phase and magnitude.

F (t) = R(t) + iI(t)

Magnitude is (R(u)2 + I(u)2)1/2, phase is tan−1I(u)/R(u).

2.3 Implications of the orthonormality of the fourier series

As with an orthonormal basis for vectors, the orthonormality of the fourier series means that we
can use projection and (a generalization of) the Pythagorean theorem.

We define the inner product between functions just the same way we do between vectors.
Multiplying and summing. So, for example:

< f(t), sin(t) >=

∫
f(t)sin(t)dt

So we have:
a0 = (1/π) < f(t), 1 >= (1/2π)

∫
f(t)dt.
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This is called the DC component of f. And:

ak = (1/π) < f(t), cos(kt) >= (1/π)

∫
f(t) cos(kt)dt

bk = (1/π) < f(t), sin(kt) >= (1/π)

∫
f(t) sin(kt)dt

And then:
f(t) = a0/2 +

∑
ak cos(kt) +

∑
bk sin(kt)

The analog to the Pythagorean theorem is called Parsevaal’s theorem. This is:∫
f2(t) = (π/2)a20 + π(

∑
a2i + b2i ).

And if we approximate a function with a finite number of terms in a fourier series, we can
measure the quality of this approximation.

∫
(f(t)− a0/2−

N∑
1

ak cos(kt) +
∑

bk sin(kt))
2 = (

∞∑
N+1

ak cos(kt) +
∑

bk sin(kt))
2

2.4 Fourier Transform

We’ve talked about approximating periodic functions over the interval 0 to 2π. It’s basically the
same to approximate arbitrary functions. First, to approximate periodic functions over a longer
interval, we just reparameterize to get something periodic from 0 to 2π, use the Fourier series, and
then unreparameterize. For an arbitrary interval, we take the limit of this process.

If f(t) is periodic over the interval 0 to 2πl, we take:

f(t) =
∑

ake
ikt/l

If we take the limit as l→∞, this is equivalent to using eikt for any real value of k. So, instead
of taking a sum, we must take an integral.

f(t) =

∫ ∞
−∞

F (k)eiktdk

This makes sense, because if we have a long enough interval, any two sine waves with different
(real, not integer) frequencies will be orthogonal, because eventually they go completely out of
phase. So for example, sin(t) and sin(1.5t) will be orthogonal over an interval of 0 to 4π, even
though they wouldn’t be over an interval of 0 to 2pi.

Notice that to take the inner product of complex numbers we must take the complex conjugate
of one. So, for example, the inner product of (1 + i) with itself is not 12 + i2 = 0, but is 12 − i2 = 2.
So, we have:

F (k) =

∫ ∞
−∞

f(t)e−iktdt

So inverting the fourier transform is almost the same as taking it.
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