
Level Sets

1 Introduction

We’re going to talk about level sets as a way of computing the evolution (or motion) of a curve over
time. This is not because we’re actually interested in curves moving over time, but because we are
interested in finding curves that optimize some measure of goodness for boundaries. In this case,
the evolution of the curve will just be a kind of gradient descent to an increasingly better boundary.
However, I’ll mention another big application of curve evolution in vision, which is to build a scale
space for curves. In this case, the evolution of the curve can be a diffusion, that simplifies the
curve. Notice, that we have already touched on this topic, because we saw that some formulations
of non-linear diffusion in images result in a smoothing of the intensity level curves.

Notation:
C(s, t) is a point on the curve at some position and time. s denotes arclength, and t denotes

time.
Cs is the tangent to the curve. The change in the position, as arclength changes.
Css is the curvature times the normal, the change in the tangent as arclength varies.
Ct is the motion of a point over time. Notice that Ct can have a component in the normal

direction and the tangent direction, but we are only interested in the change in the normal direction.
Changes in the tangent direction correspond to points moving along the curve, but to us all points
on the curve will be the same.

Examples of simple curve evolution:

1. Evolution with the distance transform. Here a curve moves inward at a constant rate of
speed. We can write this as Ct(s) = n(s) (where n is the normal vector). This is an old curve
evolution, introduced by Blum in the 60s and called the grassfire transform. This has been
used for shape description, because the singularities of this transform intuitively describe the
skeleton of a shape.

This simple transform illustrates a couple of difficulties raised by curve evolution. First, the
topology of the curve can change. This is a big challenge for many numerical methods. If
we think about the simple descent algorithm used by SNAKEs, one can see that it is totally
unsuited to handling changes in topology. Another way to think about this is if we evolve the
curve according to Ct = n, then the curve self-intersects after a while.

A second problem is that we can start with a simple smooth curve, and a simple evolution,
and wind up with discontinuities. In this case, this can happen when a point is equidistant to
two (or more) points on the initial curve, and these are the closest points on that curve.

2. In a second flow, the motion is proportional to curvature: Ct(s) = k(s)n(s). This flow has
some very interesting properties. First, we can rewrite this as: Ct = Css. This should remind
you of the diffusion equation. This has the property that it steadily reduces the curvature of
the curve until it is convex, then ultimately smooths it to a point, without self-intersections ever
occurring. This is like what happens with diffusion of a function, but with a curve embedded
in 2D.

1



3. Just as a minor note, these flows can be used to smooth images. We take the level sets of
the images, treat these as contours, and then evolve these with a curve smoothing method.

2 Level Set Formulation

Now we formulate curve evolution.
Let F be some function that describes the speed of the curve flow in the direction normal to

the curve. F may be a function of (x, y) and may depend on image properties. It may also depend
on things like the curvature of the curve.

T (x, y) is the time when the curve crosses the position (x, y) (note that this assumes the curve
crosses each point once).

Then we have:

∥∇T∥F = 1 Boundary Value Formulation

with T (x, y) = 0 on the initial curve.
This just says that the faster the curve is moving, the slower the arrival time is changing.
One way to write this if the arrival time isn’t a function of x and y, is to formulate a function ϕ

of x, y, and time, so that the 0 set of this function represents the position of the curve. This is just
like writing an implicit equation for a circle, or any other curve.

Let x(t) be a particle on the curve, whose position is a function of t. Then we must have:

ϕ(x(t), t) = 0.

By the chain rule we have:

ϕt +∇ϕ(x(t), t)x′(t) = 0

Since F is the speed in the normal direction, we have:

x′(t) · n = F,

where n is ∇(ϕ)
∥∇(ϕ)∥ .

Substituting, x′(t) · ∇ϕ = F∥∇ϕ∥ we get:

ϕt + F∥∇ϕ∥ = 0, with the initial condition ϕ(x, 0) = 0. INITIAL VALUE FORMULATION

I’m skipping over a couple of points here. We haven’t really said how to get the full initial
condition. And, if we want F to be a function of curvature, we have to write curvature as a function
of ϕ for this formulation. That is, we need an expression that evaluates to curvature on the zero
level set.

Both of these formulations can be used to solve the problems of curve evolution. Each of
these give us PDEs that we want to solve numerically. In both cases we need to worry about
singularities. In both cases, efficiency comes from noticing that we care about information initially
along a curve, and we need to propagate this information in the neighborhood of the curve.

2



3 Discontinuity of Solution

As we saw last time, for some simple curve evolutions, we can obtain curves with discontinuities.
When we formulate curve evolution with a PDE, this PDE will not be defined at discontinuities,
since we can’t take derivatives. However, when we evolve a curve with a speed proportional to
the curvature, we don’t get this problem, the curve only gets smoother. It turns out that if we take
other curve evolutions, and add a small component of this diffusion, (this diffusion force times ϵ)
our curve will stay smooth. This makes sense, since as the curve gets singular, the curvature
goes to infinity, so even when ϵ is small, this smoothing has a big effect. Then, we take the limit of
this process, as ϵ goes to 0. This gives us well-defined behavior, and converges to what we would
expect. There are technical conditions that ensure that the algorithms that solve level sets have
this behavior, but I’ll ignore those.

4 Solution Methods

The solution methods we will describe depend on the notion of upwind differencing, so let me
explain that in a simple setting. The intuition is that curve evolution is an advection equation, in
which something is moving. In that case, it is important to base your numerical approximations to
derivatives on the region where the thing is coming from, not on where it’s going to.

Consider ut(x, t) + ux(x, t) = 0, with u(x, 0) = f(x).
The solution to this equation is constant along parallel lines in x− t space.
We know that we can approximate these derivatives numerically as:

ut =
(u(x, t+ k)− u(x, t))

k

ux =
(u(x+ h, t)− u(x, t))

h

Solving the equation with this, we get:

u(x, t+ k) =
−k(u(x+ h, t)− u(x, t))

h
+ u(x, t).

The problem with this is that we base the value of u(x, t + k) on values u(x, t) and values to
the right of that, when the real solution depends on values to the left. So in upwind differencing,
we just instead use:

ux =
(u(x, t)− u(x− h, t))

h
.

This is easy, because it’s clear the direction in which information is propagating in this simple
example. With curve evolution, the direction of propagation depends on where we are in the curve,
and exactly how things are propagating. So we need an upwind differencing scheme in which the
direction of propagation is adaptive. This leads to the fast marching method, which we’ll look at for
the first curve evolution we discussed, ∥∇T∥F = 1. In this case, we need to compute, for every
discrete location, the time when the curve reaches that location. We start with a set of nodes that
have a time of zero. At every time step, we update those nodes that can be computed with an
upwind scheme. Then we keep the one for which the time is smallest, and try again on all nodes.

3



Let’s illustrate this with a simple example. Suppose that F = 1 and the initial condition T (x, y) =
0 is satisfied at (x, y) = (0, 0). Also, let’s discretize the problem at intervals of 1. So we begin with
T defined only at the origin, with a value of 1. The next points that can be reached by the contour
are the four-connected neighbors. These can all be reached in one time step, and so we can
update T (1, 0) = 1, T (0, 1) = 1, T (−1, 0) = 1, T (0,−1) = 1.

Next, we consider updating all the neighbors to these nodes, and we actually update the nodes
for which T would be smallest. Let’s consider this for the node (1, 1). At this node, we can compute:

∂T

∂x
(1, 1) ≈ T (1, 1)− T (0, 1)

∂T

∂y
(1, 1) ≈ T (1, 1)− T (1, 0)

using finite differences. Note that for another node, we would need to take the finite differences in
a different direction, eg.:

∂T

∂x
(−1, 1) ≈ T (1, 1)− T (0, 1)

∂T

∂y
(−1, 1) ≈ T (1, 1)− T (1, 0)

Given this, at (1, 1) we have:

0 = ∥∇T∥F − 1 ≈
√

2(T (1, 1)− 1)2 − 1

and:

T (1, 1) =

√
2

2
+ 1

This isn’t quite right. This is because we are making a first order approximation. The method
is, in effect, acting as if the value of T (12 ,

1
2) is 1, when it should be

√
2
2 . However, with a first

order approximation there is no way to account for this. This looks a lot like Dijkstra’s shortest path
algorithm. And, in fact, this problem is really just a shortest path problem. The difference is that we
update times using the underlying PDE, in this case, solving a quadratic equation. And the solution
is much better than 2, which is what we would get by just running shortest path algorithm on the
grid. Also, in the limit as the grid gets small, this method converges to an exact solution, whereas
Dijkstra wouldn’t. And we have the option of using more accurate, second order schemes.

We can also solve the level set formulation more efficiently, using a similar idea. Here, we are
computing ϕ as a function of x and t. But we are only interested in the solution near the zero
level set. So, at t = 0, we form a narrow band around the level set, and let the solution propagate
upwind, until we leave this band. Then we find the zero level set, and reformulate a new problem.

4


