
Announcements

• Readings for today:
– Markov Random Field Modeling in Computer 

Vision. Li.  First two chapters on reserve.
– ``Stochastic Relaxation, Gibbs Distributions, and 

the Bayesian Restoration of Images,’’ Geman and 
Geman.  On reserve.

– ``Fast Approximate Energy Minimization via Graph 
Cuts’’, by Boykov, Veksler, and Zabih.



Markov Random Fields

• Markov chains have 1D structure
– At every time, there is one state.
– This enabled use of dynamic programming.

• Markov Random Fields break this 1D 
structure.
– Field of sites, each of which has a label, 

simultaneously.
– Label at one site dependent on others, no 1D 

structure to dependencies.
– This means no optimal, efficient algorithms.



Definitions

• S indexes a discrete set of sites.
– S = {1, …, m}

– S = {(i,j) | 1 <= i, j <= n} for nxn grid. 

• Ld = discrete set of labels, eg. {1, … M}.
– Labels could be continuous, but we skip that.

• A labeling assigns a label to every site, 

f = {f1, … fm}.  fi is the label of site i.



Neighborhoods

• Neighborhood specifies dependencies.
– N = {Ni | for all i in S}
– Ni  is neighborhood of i.  j in Ni means i and j are 

neighbors.  
• A site is not its own neighbor.
• Neighborhood is symmetric.

• Neighborhood -> conditional indep.
– F is an MRF on S w.r.t. N iff:

• P(f) > 0
• P(fi | fS-{i}) = P(fi | fNi)



Example: Image Segmentation

• Each segment has a constant property 
corrupted by i.i.d. noise

• Every pixel is a site.
• Label is intensity, uncorrupted by noise.
• Label depends on observation; pixel 

corrupted by noise.
• Also depends on other labels.

– If you see an image with one pixel missing, you 
can guess value of missing pixel pretty well.





Example: Stereo
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(Camps)



Stereo correspondence

• Determine Pixel Correspondence
– Pairs of points that correspond to same 

scene point

• Epipolar Constraint
– Reduces correspondence problem to 1D 

search along conjugate epipolar lines

epipolar plane
epipolar lineepipolar lineepipolar lineepipolar line

(Seitz)



Simplest Case

• Image planes of cameras are parallel.
• Focal points are at same height.
• Focal lengths same.
• Then, epipolar lines are horizontal scan 

lines.



We can always achieve this 
geometry with image 

rectification

• Image Reprojection
– reproject image planes onto 

common 
plane parallel to line between optical 
centers

• Notice, only focal point of camera really matters
(Seitz)



Disparity defines correspondences
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(Camps)

Then given Z, we can compute X 
and Y.
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Correspondence with MRF

• Every pixel is a site.
• Label of a pixel is its disparity.
• Disparity implies two pixels match.  

Prob. depends on similarity of pixels.
• Disparity at one pixel related to others 

since nearby pixels have similar 
disparities.



Neighborhoods are important in 
stereo

Propagate information 
in constant regions

Avoid inconsistent, streaky 
solutions



Using MRFs

• We need to define sites and labels.
• Define neighborhood structure capturing 

conditional probability structure.
• Assign probabilities that capture 

problem.
• Find most probable labeling.
• Gibbs Distribution useful 

conceptualization.



Gibbs Distribution

• Cliques capture dependencies of 
neighborhoods.
– {i} is a clique for all i.  

– {i1, i2, … in} is a clique if ik in Nj for all 
1<=i,j<=n.   



Gibbs Distribution (2)

• U(f) is energy function.
• Vc(f) is clique potential
• Z is normalizing value.

– Sum over all labelings.

• T is temperature.
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MRF=GRF

• Given any MRF, we can define an 
equivalent GRF.
– That means, find an appropriate energy 

U(f)

• To find f that maximizes P(f) it suffices 
to minimize:
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Significance

• Not so easy to determine absolute probability 
of labeling
– We must sum over all configurations.
– Exponential

• But we can determine relative probability of 
labeling efficiently.
– This was trivial for Markov chains, but not for 

MRFs.
– This is all we need to find most probable labeling.



Example: Piecewise Constant 
Image Restoration

• Every pixel is a site.
• Four connected neighborhoods

Each site 
is a clique

All pairs of 
neighbors 
are cliques

• Observation, di of intensity at site i. 



Example, cont’d
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Optimization

• Our problem is going to be to choose f
to minimize this energy.

• Usually this is NP-hard: heuristics or 
exponential algorithms.
– Greedy:

• loop through sites, changing labeling to reduce 
energy.

• Constant time to make this decision.



Optimization (2)

– Simulated Annealing (MCMC).
• Pick site, i, at random.  Let f’ be old labels, f be f’ with fi

randomly changed.
• p = min(1, P(f/f’)).
• Replace f’ with f with probability p.
• As T -> 0 method becomes
deterministic.  By slowly 
lowering T states of f become
a Markov chain guaranteed to converge to global optimum.
• This takes exponential time.
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Optimization (3)

• Belief Propagation.
– At each step, a site collects information from 

neighbors on their probable labeling.  Passes info 
to each neighbor based on info from other 
neighbors (avoids repeating to neighbor what that 
neighbor has told.

– In graph with no loops, like dynamic programming, 
forward-backward method.

– In general MRF, heuristic (that has been 
analyzed).  (eg., Yedidia, Freeman and Weiss).



Optimization (4)

• Graph cuts. (eg., Boykov, Veksler, and Zabih).

– Instead of changing one label at a time, change 
many.

• This allows alg. to escape many local mins.

– Swap moves
• For a pair of labels, α and β, find best relabeling of 

vertices with those two labels, using those two labels.

� α-expansion. Find best relabeling of all vertices so 
that they now are labeled α.

– Both relabels can be posed as a graph cut 
problem, solved optimally in polynomial time.



α−β swap



Min-Cut gives best swap

• Min-cut 
– requires edge to one label be cut.

– Cut between neighbors w/ diff. labels.

• Link to each label is cost of applying 
that label; cut means label is applied.

• Link between pixels = neighborhood 
cost (0 when same label).


