Announcements

- Readings for today:
 - Markov Random Field Modeling in Computer
 Vision. Li. First two chapters on reserve.
 - ``Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," Geman and Geman. On reserve.
 - ``Fast Approximate Energy Minimization via Graph Cuts", by Boykov, Veksler, and Zabih.

Markov Random Fields

- Markov chains have 1D structure
 - At every time, there is one state.
 - This enabled use of dynamic programming.
- Markov Random Fields break this 1D structure.
 - Field of sites, each of which has a label, simultaneously.
 - Label at one site dependent on others, no 1D structure to dependencies.
 - This means no optimal, efficient algorithms.

Definitions

- S indexes a discrete set of sites.
 - $-S = \{1, ..., m\}$
 - $-S = \{(i,j) \mid 1 \le i, j \le n\} \text{ for } n \times n \text{ grid.}$
- L_d = discrete set of labels, eg. {1, ... M}.
 - Labels could be continuous, but we skip that.
- A labeling assigns a label to every site,
- $f = \{f_1, \dots f_m\}$. f_i is the label of site i.

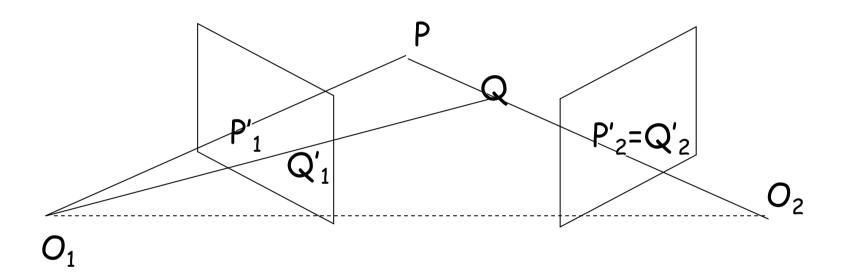
Neighborhoods

- Neighborhood specifies dependencies.
 - $-N = \{N_i \mid \text{for all } i \text{ in } S\}$
 - N_i is neighborhood of i. j in N_i means i and j are neighbors.
 - A site is not its own neighbor.
 - Neighborhood is symmetric.
- Neighborhood -> conditional indep.
 - F is an MRF on S w.r.t. N iff:
 - P(f) > 0
 - $P(f_i | f_{S-\{i\}}) = P(f_i | f_{N_i})$

Example: Image Segmentation

- Each segment has a constant property corrupted by i.i.d. noise
- Every pixel is a site.
- Label is intensity, uncorrupted by noise.
- Label depends on observation; pixel corrupted by noise.
- Also depends on other labels.
 - If you see an image with one pixel missing, you can guess value of missing pixel pretty well.

Example: Stereo

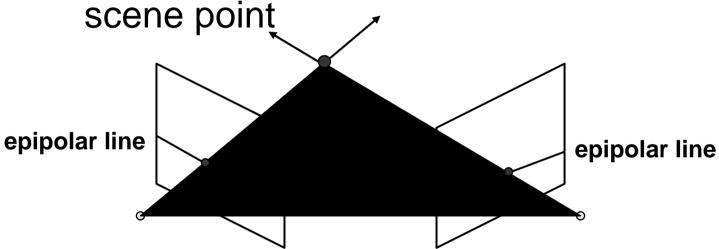


Depth can be recovered with two images and triangulation.

(Camps)

Stereo correspondence

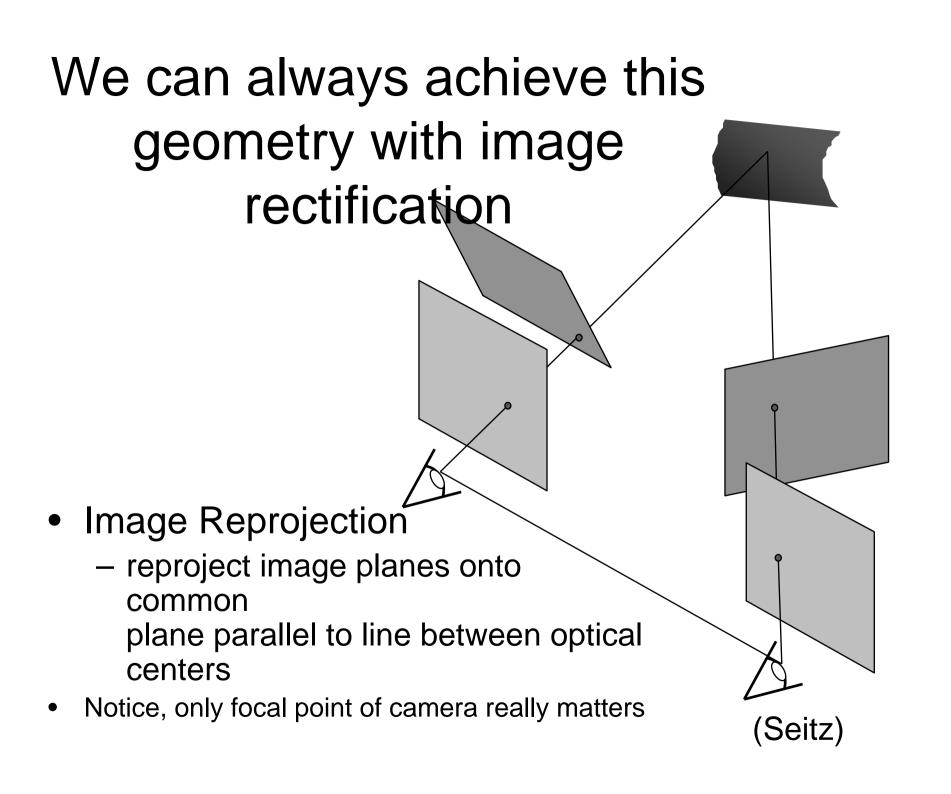
- Determine Pixel Correspondence
 - Pairs of points that correspond to same



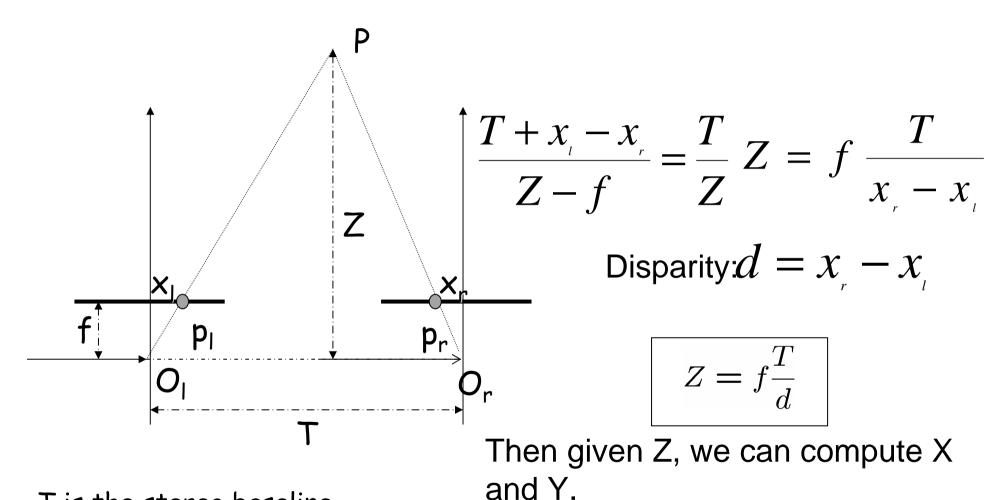
- Epipolar Constraint
 - Reduces correspondence problem to 1D search along conjugate epipolar lines
 (Seitz)

Simplest Case

- Image planes of cameras are parallel.
- Focal points are at same height.
- Focal lengths same.
- Then, epipolar lines are horizontal scan lines.



Disparity defines correspondences



T is the stereo baseline

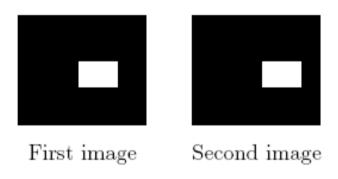
d measures the difference in retinal position between corresponding points

(Camps)

Correspondence with MRF

- Every pixel is a site.
- Label of a pixel is its disparity.
- Disparity implies two pixels match.
 Prob. depends on similarity of pixels.
- Disparity at one pixel related to others since nearby pixels have similar disparities.

Neighborhoods are important in stereo



Propagate information in constant regions

Avoid inconsistent, streaky solutions

Using MRFs

- We need to define sites and labels.
- Define neighborhood structure capturing conditional probability structure.
- Assign probabilities that capture problem.
- Find most probable labeling.
- Gibbs Distribution useful conceptualization.

Gibbs Distribution

- Cliques capture dependencies of neighborhoods.
 - {i} is a clique for all i.
 - $-\{i_1, i_2, \dots i_n\}$ is a clique if i_k in N_j for all 1 <= i, j <= n.

Gibbs Distribution (2)

$$P(f) = \frac{1}{Z}e^{-U(f)}/T$$

$$U(f) \text{ is energy function.}$$

$$V_c(f) \text{ is clique potential}$$

$$Z = \sum_{c \in C} V_c(f)$$

$$Z = \sum_{c \in C} V_c(f)$$

$$T \text{ is temperature.}$$

- - Sum over all labelings.
- T is temperature.

MRF=GRF

- Given any MRF, we can define an equivalent GRF.
 - That means, find an appropriate energy
 U(f)
- To find f that maximizes P(f) it suffices to minimize:

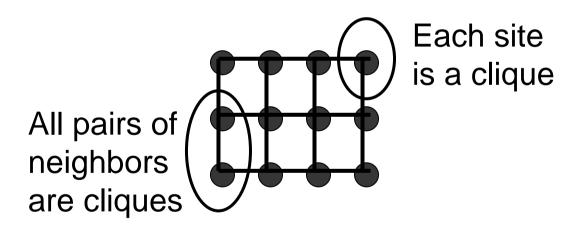
$$U(f) = \sum_{c \in C} V_c(f)$$

Significance

- Not so easy to determine absolute probability of labeling
 - We must sum over all configurations.
 - Exponential
- But we can determine relative probability of labeling efficiently.
 - This was trivial for Markov chains, but not for MRFs.
 - This is all we need to find most probable labeling.

Example: Piecewise Constant Image Restoration

- Every pixel is a site.
- Four connected neighborhoods



• Observation, d_i of intensity at site i.

Example, cont'd

$$P(f \mid d) = P(d \mid f)P(f)/P(d)$$

Suppose:
$$d_i = f_i + e_i$$

 e_i i.i.d. Gaussian $N(0, \sigma^2)$

$$P(d \mid f) = \prod P(d_i \mid f_i)$$

$$P(d_i | f_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{(f_i - d_i)^2/2\sigma^2}$$

$$U(d_i \mid f_i) \equiv (f_i - d_i)^2 / 2\sigma^2$$

$$P(f \mid d) = P(d \mid f)P(f)/P(d)$$
Suppose: $d_i = f_i + e_i$

$$e_i \text{ i.i.d. Gaussian } N(0, \sigma^2)$$

$$P(d \mid f) = \prod P(d_i \mid f_i)$$

$$P(d_i \mid f_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{(f_i - d_i)^2/2\sigma^2}$$

$$C = \{i\}, \quad V_c = \alpha_l \text{ for } f_i = l$$

$$C = \{i\}, \quad V_c = \{i$$

Prior on

discontinuities

Minimize Energy:
$$\sum U(d_i \mid f_i) + \sum V_c$$

Optimization

- Our problem is going to be to choose f to minimize this energy.
- Usually this is NP-hard: heuristics or exponential algorithms.
 - Greedy:
 - loop through sites, changing labeling to reduce energy.
 - Constant time to make this decision.

Optimization (2)

- Simulated Annealing (MCMC).
 - Pick site, i, at random. Let f be old labels, f be f with f_i randomly changed.
 - $p = \min(1, P(f/f')).$
 - Replace f' with f with probability p.
 - As T -> 0 method becomes deterministic. By slowly lowering T states of f become

$$P(f) = \frac{1}{Z}e^{-U(f)/T}$$

- a Markov chain guaranteed to converge to global optimum.
- This takes exponential time.

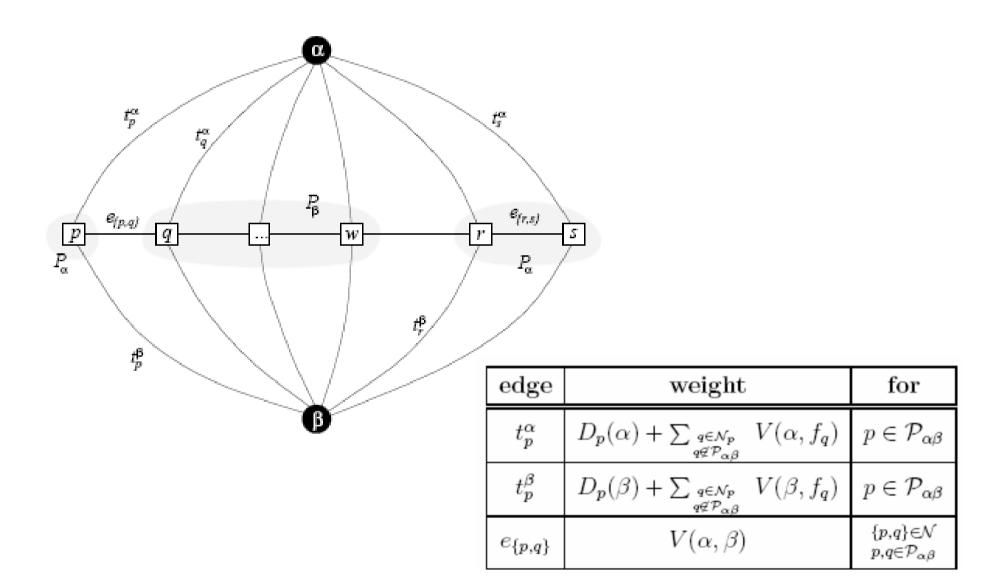
Optimization (3)

- Belief Propagation.
 - At each step, a site collects information from neighbors on their probable labeling. Passes info to each neighbor based on info from other neighbors (avoids repeating to neighbor what that neighbor has told.
 - In graph with no loops, like dynamic programming, forward-backward method.
 - In general MRF, heuristic (that has been analyzed). (eg., Yedidia, Freeman and Weiss).

Optimization (4)

- Graph cuts. (eg., Boykov, Veksler, and Zabih).
 - Instead of changing one label at a time, change many.
 - This allows alg. to escape many local mins.
 - Swap moves
 - For a pair of labels, α and β , find best relabeling of vertices with those two labels, using those two labels.
 - α -expansion. Find best relabeling of all vertices so that they now are labeled α .
 - Both relabels can be posed as a graph cut problem, solved optimally in polynomial time.

α - β swap



Min-Cut gives best swap

- Min-cut
 - requires edge to one label be cut.
 - Cut between neighbors w/ diff. labels.
- Link to each label is cost of applying that label; cut means label is applied.
- Link between pixels = neighborhood cost (0 when same label).