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Optical Flow

• Small motion:  (u and v are less than 1 pixel)
– H(x,y) = I(x+u,y+v)

• Brute force not possible

• suppose we take the Taylor series expansion of I:

(Seitz)

Optical flow equation

• Combining these two equations

• In the limit as u and v go to zero, this 

becomes exact

(Seitz)



2

Optical flow equation

• Q:  how many unknowns and equations per 
pixel?

• Intuitively, what does this constraint 

mean?
– The component of the flow in the gradient 

direction is determined

– The component of the flow parallel to an edge 
is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm

(Seitz)

Let’s look at an example of this.  Suppose we have an image in which H(x,y) = y.  

That is, the image will look like:

11111111111111

22222222222222

33333333333333

And suppose there is optical flow of (1,1).  The new image will look like:

-----------------------

-1111111111111

-2222222222222

I(3,3) = 2.  H(3,3) = 3.  So It(3,3) = -1.  GRAD I(3,3) = (0,1).  So our constraint 
equation will be: 0 = -1 + <(0,1), (u,v)>, which is 1 = v.  We recover the v 
component of the optical flow, but not the u component.  This is the aperture 

problem.
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First Order Approximation

When we assume: 

We assume an image 

locally is:

(Seitz)
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(Seitz)
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Aperture problem

(Seitz)

Solving the aperture problem
• How to get more equations for a pixel?

– Basic idea:  impose additional constraints

• most common is to assume that the flow field is smooth 

locally

• one method:  pretend the pixel’s neighbors have the 

same (u,v)

– If we use a 5x5 window, that gives us 25 equations per 

pixel!

(Seitz)
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Lukas-Kanade flow

• We have more equations than unknowns: solve least 
squares problem.  This is given by:

– Summations over all pixels in the KxK window

– Does         look familiar? (Seitz)

Let’s look at an example of this.  Suppose we have an image with a corner.

1111111111                                                      -----------------

1222222222    And this translates down and to the right: -1111111111   

1233333333                                                      -1222222222

1234444444                                                      -1233333333

Let’s compute It for the whole second image:  

---------- Ix =  ---------- Iy = -------------

0-1-1-1-1-1            --00000          --------------

-1-1-1-1-1-1           --.50000         -0-.5-1-1-1-1-1-1

-1-1-1-1-1-1- --1.5000         -00-.5-1-1-1-1-1

Then the equations we get have the form:

(.5,-.5)*(u,v) = 1,    (1,0)*(u,v) = 1,   (0,-1)(u,v) = 1.  

Together, these lead to a solution that u = 1, v = -1.
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Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small

• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue) (Seitz)

Weak perspective (scaled 
orthographic projection)

• Issue

– perspective effects, 

but not over the 

scale of individual 
objects

– collect points into a 

group at about the 

same depth, then 
divide each point by 

the depth of its group

(Forsyth & Ponce)
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Perspective -> Scaled 
Orthographic

• Recall: (xi,yi,zi) -> (xi/zi, yi/zi) 

• Let Z = (z1+z2 + …+zn)/n

• Then, (xi,yi,zi) approx-> (xi/Z, yi/Z) 

The Equation of Weak 
Perspective

),(),,( yxszyx →

• s is constant for all points.

• Parallel lines no longer converge, they remain 
parallel.
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Pros and Cons of These 
Models

• Weak perspective much simpler math.
– Accurate when object is small and distant.

– Most useful for recognition.

• Pinhole perspective much more 
accurate for scenes.
– Used in structure from motion.

• When accuracy really matters, must 
model real cameras.

First: Represent motion

• We’ll talk about a fixed camera, and moving object.

• Key point:
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Structure-from-Motion

• S encodes:

– Projection: only two lines

– Scaling, since S can have a scale factor.

– Translation, by tx/s and ty/s.

– Rotation:

SPI =

Rotation
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3D rotation of 
the points in P.
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First, look at 2D rotation 
(easier)


















− n

n

yyy

xxx

21

21 ...

cossin

sincos

θθ

θθ










−
=

θθ

θθ

cossin

sincos
R

Matrix R acts 

on points by 
rotating them.

• Also, RRT = Identity. RT is also a rotation 

matrix, in the opposite direction to R.

Simple 3D Rotation
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Full 3D Rotation
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• Any rotation can be expressed as combination of three 

rotations about three axes.
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• Rows (and columns) of R are 

orthonormal vectors.

• R has determinant 1 (not -1).

Putting it Together
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Affine Structure from Motion
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First Step: Solve for Translation 
(1)

• This is trivial, because we can pick a simple 
origin.

– World origin is arbitrary.

– Example: We can assume first point is at origin.

• Rotation then doesn’t effect that point.

• All its motion is translation.

– Better to pick center of mass as origin.

• Average of all points.

• This also averages all noise.

First Step: Solve for Translation 
(2)
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First Step: Solve for Translation 
(3)
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As if by magic, there’s no translation.

Rank Theorem
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has rank 3.

This means there 

are 3 vectors 
such that every 

row of      is a 

linear 

combination of 

these vectors.  
These vectors 

are the rows of P.
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Solve for S

• SVD is made to do this.

UDVI =
~ D is diagonal with non-increasing 

values.

U and V have orthonormal rows.

Ignoring values that get set to 0, we 

have U(:,1:3) for S, and 

D(1:3,1:3)*V(1:3,:) for P.

Linear Ambiguity

I
~

I
~

= U(:,1:3) * D(1:3,1:3) * V(1:3,:)

= (U(:,1:3) * A) * (inv(A) *D(1:3,1:3) * V(1:3,:))
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Noise

• has full rank.

• Best solution is to estimate I that’s as near to 

as possible, with estimate of I having rank 3.

• Our current method does this.

I
~

I
~

Weak Perspective Motion
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Row 2k and 

2k+1 of S should 
be orthogonal.  

All rows should 

be unit vectors.

(Push all scale 

into P).

=(U(:,1:3)*A)*(inv(A) *D(1:3,1:3)*V(1:3,:))

Choose A so  

(U(:,1:3) * A) 
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conditions.
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Multi-object Motion
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Given enough images, I will have rank 4n.

Multi-body Factorization

• Main insight.  Consider columns of I, 

corresponding to individual points.

– If two columns come from different objects, 
they are unrelated.  Their inner product is 
likely to be small.

– If five columns come from the same object, 
in general the fifth will be a linear 
combination of the other four.
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Factorization
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As we continue this process, we reach a column that 

belongs to the same object as four previous columns.  This 
column cannot provide a new axis of the coordinate 

system.  Instead, its coordinates will be non-zero in the 

rows that are non-zero for the four previous columns from 

this object, and will be zero (or small) in other rows.  This 

allows us to readily detect the separately moving objects in 
the scene.  


