


What makes DNs so successful?

Common deep networks seem to defy basic 
machine learning principles: 

How come over-parameterized networks 
do not overfit?

◦ Resnet has 60M learnable parameters (VGG has 140M)
◦ But ImageNet includes only 1.2M training images



Random relabeling 
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(Zhang et al., ICLR 2017)



Understanding deep learning 
requires rethinking generalization

Loss on training (CIFAR10)
Zhang et al., ICLR 2017



Partial random relabeling
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Partial relabeling: training



Partial relabeling:
test against true labels



Frequency bias



Frequency bias



Frequency bias



Frequency bias
Can we explain this frequency bias?
How long should it take to learn a single 
frequency?



Two-layer network
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Two-layer network
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Network predictions as a 
“linear” system
Write predictions for training data as a linear operation:
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Eg., Du et al., ICLR 2019



GD for linear systems
Suppose we want to minimize !" # − %& " using 
gradient descent with &(() = 0
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The kernel
Define

! " = $%$

Du et al. 2018’s observation: 
when the network is massively over-parameterized 
! " ~!', where
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What are the eigenvectors?
If the training data is distributed uniformly on the 
hyper-sphere then !" represents a convolution

# ∗ % & = ∫)* # &+, % , -,
Therefore, eigenvectors are spherical harmonics

Recall that 
!./" = # 0., 0/ = 1

24 0.
+0/(4 − cos:;(0.+0/))

(See also Xie et al., 2017)



Eigenvalues (d=1)
Eigenvectors are the Fourier series
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Fitting to pure frequency

k=4 k=3



Convergence times
Relying on Arora et al., 2019, the number of 
iterations required to achieve accuracy !:
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Even frequencies: "# ≿ 3 4567 5

8 4597 = 0 :8

Odd frequencies: "# → ∞



Convergence times



Adding bias
Adding bias rectifies the problem
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Convergence times (with bias)



Convergence
(Resnet-10, 1D data embedded in ℛ"#)



Higher dimension
Eigenvectors are spherical harmonics
Eigenvalues can be derived using the Gegenbauer
polynomials
With no bias odd frequencies ! ≥ 2 vanish
Convergence time for high frequencies increase 
exponentially in the dimension



Eigenvalues for higher dim.

!"# =

%

&

'

(&)*+

,
(

&
+

&).+

(
(/'
)
0

−
'

&
∑345

).0
0 −1 3

(/&

&
7

'

&38'
9 = 0

%

&
∑
34 #/&

#8
).0
0 <3

'

=38&
+

'

=3
1 −

'

&0>
27
7 9 = 1

%

&
∑
34 #/&

#8).0
0 <3

/'

=3/&#8&
+

'

=3/&#8=
1 −

'

&0>.@*0

27 − 9 + 2
&3/#8&

&

9 ≥ 2, even

%

&
∑
34 #/&

#8).0
0 <3

'

=3/&#8&
1 −

'

&0>.@*+

27 − 9 + 1
&3/#8'

&

9 ≥ 2, odd

H =
(/')@&K)/0

&@L #8
)
0
(

and   <3 = −1 3 9 +
(/&

&
7

&3 !

#!



2D, no bias



2D, with bias



2D, deep



Higher dimension



What will the network learn?



What will the network learn?



What will the network learn?



Conclusion
Deep networks show a frequency bias –
low frequencies appear to be learned faster than 
high frequencies
Our work determines the rate of learning 
analytically, as a function of frequency, for over-
parameterized, two-layer network
It further points out that two-layer, bias free 
networks are non-universal, and cannot represent 
odd frequencies


