

What makes DNs so successful?

Common deep networks seem to defy basic
machine learning principles:

How come over-parameterized networks
do not overfit?

◦ Resnet has 60M learnable parameters (VGG has 140M)
◦ But ImageNet includes only 1.2M training images

Random relabeling

1
2
3
4
5

MNIST images Labels

.

.

.

.

.

(Zhang et al., ICLR 2017)

Understanding deep learning
requires rethinking generalization

Loss on training (CIFAR10)
Zhang et al., ICLR 2017

Partial random relabeling

1
2
3
4
5

MNIST images Labels

.

.

.

.

.

Partial relabeling: training

Partial relabeling:
test against true labels

Frequency bias

Frequency bias

Frequency bias

Frequency bias
Can we explain this frequency bias?
How long should it take to learn a single
frequency?

Two-layer network

!" !# !$%"

&((;*)

Two-layer network

! ",$ = 1
'(

)*+

,
-). $)/" , . 0 = max(0, 0)

MSE Loss: 7 $ = +
8∑:*+

; (<= − ! "=, $)8

Network predictions as a
“linear” system
Write predictions for training data as a linear operation:

! " =
$% = &((),+)

⋮
$. = &((/,+)

= 01+

where we define 0 = 0(") as

01 = 1
3

4%5%%() ⋯ 4757%()
⋮ ⋮

4%5%.(/ ⋯ 4757.(/

Back-prop minimizes %8∑:;%
. (<= − 01(")+)8

Eg., Du et al., ICLR 2019

GD for linear systems
Suppose we want to minimize !" # − %& " using
gradient descent with &(() = 0

,(!) = −-%.%#
,(") = −2-%.%# − -" %.% "#
,(0) = −3-%.%# − 3-" %.% "# − -0 %.% 0#
…

The kernel
Define

! " = $%$

Du et al. 2018’s observation:
when the network is massively over-parameterized
! " ~!', where

!()' = *+~,(.,01)!() = 3
45 6(

%6)(7 − cos<3(6(%6)))

What are the eigenvectors?
If the training data is distributed uniformly on the
hyper-sphere then !" represents a convolution

∗ % & = ∫)* # &+, % , -,
Therefore, eigenvectors are spherical harmonics

Recall that
!./" = # 0., 0/ = 1

24 0.
+0/(4 − cos:;(0.+0/))

(See also Xie et al., 2017)

Eigenvalues (d=1)
Eigenvectors are the Fourier series

!" =

2/& ' = 0
&/4 ' = 1
+("-./)
1("-2/)- ' ≥ 2, even

0 ' ≥ 2, odd

Odd frequencies vanish!!
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

⋮

Fitting to pure frequency

k=4 k=3

Convergence times
Relying on Arora et al., 2019, the number of
iterations required to achieve accuracy !:

"# >
−log(! + +)

-.#
= 0 1

.#

Even frequencies: "# ≿ 3 4567 5

8 4597 = 0 :8

Odd frequencies: "# → ∞

Convergence times

Adding bias
Adding bias rectifies the problem

!"#$% = 1
4) (+#

,+$ + 1)() − cos34(+#,+$))

567 =

1/) +)/4 9 = 0
1/) +)/8 9 = 1
2(9= + 1)
)(9= − 1)= 9 ≥ 2, even
1
)9= 9 ≥ 2, odd

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Convergence times (with bias)

Convergence
(Resnet-10, 1D data embedded in ℛ"#)

Higher dimension
Eigenvectors are spherical harmonics
Eigenvalues can be derived using the Gegenbauer
polynomials
With no bias odd frequencies ! ≥ 2 vanish
Convergence time for high frequencies increase
exponentially in the dimension

Eigenvalues for higher dim.

!"# =

%

&

'

(&)*+

,
(

&
+

&).+

(
(/'
)
0

−
'

&
∑345

).0
0 −1 3

(/&

&
7

'

&38'
9 = 0

%

&
∑
34 #/&

#8
).0
0 <3

'

=38&
+

'

=3
1 −

'

&0>
27
7 9 = 1

%

&
∑
34 #/&

#8).0
0 <3

/'

=3/&
+

'

=3/=
1 −

'

&0>.@*0

27 − 9 + 2
&3/#8&

&

9 ≥ 2, even

%

&
∑
34 #/&

#8).0
0 <3

'

=3/&
1 −

'

&0>.@*+

27 − 9 + 1
&3/#8'

&

9 ≥ 2, odd

H =
(/')@&K)/0

&@L #8
)
0
(

and <3 = −1 3 9 +
(/&

&
7

&3 !

#!

2D, no bias

2D, with bias

2D, deep

Higher dimension

What will the network learn?

What will the network learn?

What will the network learn?

Conclusion
Deep networks show a frequency bias –
low frequencies appear to be learned faster than
high frequencies
Our work determines the rate of learning
analytically, as a function of frequency, for over-
parameterized, two-layer network
It further points out that two-layer, bias free
networks are non-universal, and cannot represent
odd frequencies

