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Abstract

We consider the problem of determining whether two
images come from different objects or the same object in
the same pose, but under different illumination conditions.
We show that this problem cannot be solved using hard
constraints: even using a Lambertian reflectance model,
there is always an object and a pair of lighting conditions
consistent with any two images. Nevertheless, we show that
for point sources and objects with Lambertian reflectance,
the ratio of two images from the same object is simpler than
the ratio of images from different objects. We also show
that the ratio of the two images provides two of the three
distinct values in the Hessian matrix of the object’s surface.
Using these observations, we develop a simple measure for
matching images under variable illumination, comparing
its performance to other existing methods on a database of
450 images of 10 individuals.

1 Introduction

A central problem of visual object recognition is to use in-
formation about an object derived from sample images in
order to recognize that object under novel viewing condi-
tions. In model-based approaches, it is typically assumed
that training images are used to derive some definite infor-
mation about the shape of an object that accurately predicts
some properties of its appearance in any new image; in
appearance-based vision an effort is made to represent the
set of all images an object can produce, either by sampling
them or by generating a representation from a small set of
training images. Both approaches encounter difficulties
when few training images are available, or when the images
are taken under uncontrolled conditions. A basic ques-
tion arises: Given only a single training image of an object
how can one determine whether a test image is of the same
object taken under different conditions, or of a new object
altogether?

This paper addresses this question for the case where
variation in appearance is due to illumination. In particu-
lar, how does one look at intensity images of two completely
different objects and determine that the difference between
these images could not be due to lighting variation, but
must indicate a difference in object identity or position?
We show that given only two images, one cannot determine
with certainty whether they arise from the same or different
objects, for there always exists a continuous surface with
Lambertian reflectance that could have produced both im-

ages. While this result is demonstrated using point sources,
it of course applies to more general lighting models that in-
clude point sources as a subset. Thus when two images
appear to come from different objects, this is because it
is unlikely, not impossible (under a Lambertian reflectance
model) that they come from the same object. Our challenge
then is to justify and quantify this unlikeliness.

To do this, we must first characterize what we can deter-
mine about an object from two images. We do this for the
case of an object with Lambertian reflectance and lighting
due to two different known point sources. We show that
from the ratio of the two images, we can determine three
components of the Hessian matrix that characterizes the
surface of this object. We then extrapolate from this result
to the case where the object is illuminated by unknown light
sources.

To develop a measure for determining whether two im-
ages arise from the same object, we examine properties
of the ratio of the two images (the usefulness of this rep-
resentation was previously pointed out in Wolff and An-
gelopoulou [30] and Fan and Wolff [10]). We show that
in the case where the object is relatively simple the ratio
of two images of the same object must be even simpler
than either of the individual images (where, as an exam-
ple, we define simplicity based on the complexity of the
algebraic function needed to locally approximate the shape
or image). However, the ratio of images produced by two
different, but equally simple objects is more complex for
generic shapes and lighting conditions. We then use these
insights to derive a simple local measure of comparison.
We show that these methods can be used to produce greater
accuracy on a real task — face recognition under variable
lighting conditions — than widely used existing methods.

Finally, we briefly consider the case of more general
lighting conditions, when multiple light sources are present.
We show the difficulty of extrapolating from a small number
of training images to the entire set of images an object can
produce. Specifically, Belhumeur and Kriegman [4] have
shown that from as few as three images of an object, where
each is produced by a single point light source, one can
determine the illumination cone that describes the set of all
images that object can produce with multiple light sources.
‘We show that if the training images have multiple unknown
light sources instead of point sources, it is not possible to
determine the illumination cone exactly.



2 Background

In model-based approaches to object recognition, it has
been assumed that one can construct a precise 3-D model
of an object to use for recognition.  This is suitable for
some applications, but it has proven difficult to build accu-
rate 3-D models using only images taken in uncontrolled
circumstances. This also raises questions about the suit-
ability of approaches based on 3-D models as explanations
of human vision (e.g., Marr [18], Ullman [28]).

Another approach has been to describe 3-D objects in
terms of their invariant, or quasi-invariant properties. Such
descriptions of 3-D objects capture that portion of their
structure that is apparent in all, or almost all images of
the objects. For example, Biederman [6], based on earlier
work in computer vision (e.g., Lowe [17]), proposed that
the human visual system describes and retrieves 3-D objects
based on non-accidental properties that can be detected in
images, regardless of viewpoint. Others in computer vision
have developed approaches to recognition based on invari-
ants (for an overview, see [21]). Models of objects that are
based on invariants can, by definition, be constructed from
a single image of an object, although difficulties have also
arisen in applying such approaches to general classes of
objects ([7, 8, 20]).

Perhaps most related to the topics in this paper is the
work on image “lightness” (e.g., Horn [15]). Here the
image of an object is filtered in an attempt to remove or
suppress the lighting effects in order to recover only the
object’s surface reflectance. In [15] this is done in a three
step process of differentiation, thresholding, and integra-
tion. Yet this method is at best only locally reliable, as
image noise and errors due to shadows are compounded in
the integration process.

Partly for these reasons, appearance-based methods of
recognition have also been explored. In these methods,
an object is not described in terms of its 3-D properties,
but rather in terms of the 2-D images that it produces.
One approach to appearance-based recognition is to sample
an object’s possible images, and then to compare, in a
lower dimensional image subspace, a novel image to the
set of sampled images, using pattern recognition techniques
such as nearest neighbors (e.g., [27, 16, 22]). This works
well when the training images densely sample the space
of images one hopes to recognize. In general, though, an
object can produce so many different images that it is not
clear how to sample them all.

Alternatively, some approaches attempt to predict the
images an object can produce from a small number of
training images (e.g., [29, 26, 19, 4]). This overcomes
the difficulty of having to sample a great number of an
object’s images. However, while this may not require full
recovery of an object’s 3-D structure, it clearly requires a
lot of knowledge of 3-D structure to predict all its possible
images (e.g., [5]). Such information may not be available
when an object is viewed in only a few prior images under
uncontrolled conditions.

‘We can contrast these approaches with the one suggested
in this paper in terms of the information they hope to ex-
tract from an image. The model-based and invariant-based
approaches hope to derive intrinsic properties of the 3-D
object structure. The second set of appearance-based ap-
proaches hope to extract a characterization of the set of
images an object can produce, which may be almost as

ambitious. The first appearance-based approaches we dis-
cussed, in contrast, extract relatively little information from
eachimage. They essentially treat each image as an isolated
point of information. New images are compared to these
using a measure such as Euclidean distance in a dimension-
ally reduced image space. On the other hand, the approach
proposed here seeks to make comparisons between images
that are derived from the nature of the imaging variability.
We think of an image as providing considerable informa-
tion about what other images an object can produce, without
necessarily providing any definite information about its 3-D
structure.

3 Two Images Are Always Compatible

We are interested in comparing two images to determine
whether they come from the same, unknown object, with
the same pose, but under different illumination conditions.
So we ask first: Is it ever the case that two images cannot
come from the same object? We show that the answer to
this question is no. In fact, even if we assume that the
lighting in each scene is constrained to be a known point
source at infinity, we can always construct an object in a
fixed pose that is consistent with both images. We should
point out that while our analysis in this section correctly
handles shadowing, it does not account for interreflections.

We also show what aspects of a Lambertian object’s
structure can be determined from two images with point
sources. These results suggest a direction we may take to
gauge the likelihood that two images are produced by the
same object.

We first assume that two images, I and J, come from
a Lambertian object lit by two known point sources at in-
finity, s = (s%,sY,s*) and [ = (I*,1Y,1?) respectively. If
given these limitations (known sources and Lambertian re-
flectance), we can construct an object that is consistent with
both images, we have poor prospects of ever telling with
certainty that two images, no matter how different they may
appear, could not come from the same object.

We assume that the object is viewed from the direction
(0,0,—1), and therefore, that the depth of the surface can
be written as z = f(x,y). By writing f in this form we
are ensuring that f describes an integrable surface, i.e.,
that the surface normals of f are consistent with a true
surface. Let the albedo of the object be written as a function
a(z,y) also. Then, the surface normals of the object are

(fe> £y, 1)/4/ f2 + f} + 1, and we have the two equations
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Our problem is to determine which functions f and a may
satisfy these equations.

As Wolff and Angelopoulou [30] and Fan and Wolff [10]
have pointed out, we can deal with image pairs more simply
by taking their ratio, since this causes the effect of albedo
to cancel. However, they go on to use the ratio image for
stereo matching and for reconstructing a surface from three



images, quite different purposes than ours. Nayar and Bolle
[23] use the ratio of two regions in the same image for yet
another purpose, to cancel the effects of lighting, under the
assumption that the regions come from coplanar portions
of the object.

Taking these ratios, and defining » = I/.J, we have
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which implies
(rl® = s") fo + (rl¥ —s¥)fy + (1l — s*) = 0.

(Throughout this section, for simplicity we assume that
neither image is zero at any point, so that the ratio is well-
defined). Since f is our only unknown, this is a first order,
partial differential equation with variable coefficients. We
can solve it using well-known methods (see, for example,
Zauderer [31]). In brief, we may divide the image into
characteristic curves. Along each characteristic curve, we
change variables so that f is a function of a single variable.
Then we may find the value of f, along a characteristic
curve, up to an unknown initial condition, by integrating
along this curve.

As a simple example of this method, consider the case
of I = (0,0,1) and s = (1,0,0). Then we have f, = 7.
The characteristic curves in this case are horizontal lines
across the image. The value of f(z,y) is given by

F(@,y) = F(0,4) + /0 " w, y)dw M

where we have no obvious source of knowledge available to
provide the initial condition f(0,y). We denote this initial
condition f(0,y) as g(y). This shows that we can recover
the value of f up to an unknown initial condition given by
g. Note that we have

0 fox rdw
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Thus, we can recover f, directly from the ratio image. We
cannot recover f,, however, since g, is unknown. More-
over, even if we did know g, any straight-forward recovery
of f, from a real image would be extremely unstable, since
we would have to numerically integrate r along adjacent
characteristic curves, and then take its derivative.

Taking further partial derivatives, we have

62f$rdu)
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Thus, we can recover fyq, fzy, fye by taking derivatives of
the ratio image, but again we cannot recover fy,.

For this example, then, we see that we can use two im-
ages with known light sources to recover three components
of the Hessian matrix of the surface of the object. More-
over, these equations always have a solution for f, which
is given explicitly as Equation 1. We can also note that
for these light sources, there are no shadows. The source s

casts no shadows on the surface because f is monotonically
increasing along each characteristic curve, since I, J and
therefore f, = r are, by nature, non-negative. Since the
second light source is also the viewing direction, it cannot
cast shadows on any visible object point. Note also that for
any given f that satisfies Equation 1, we can choose a to
satisfy the equations given by the two images (such an «
may have values greater than one. To avoid this, we must
scale the intensity of each light source by an appropriate
constant).

For other lighting conditions, we get similar results.
In general, the slope of the characteristic curve is (rl¥ —
s¥)/(rl® — s®). These characteristics are not straight lines,
but vary their direction as a function of . Assuming gen-
eral lighting, so that there is no value of r that satisfies both
the equations rl¥ — s¥ = rl* — s = 0, this direction is
always unique and well-defined. In this case, the character-
istic curves can never intersect, and so there always exists
a surface that satisfies the ratio image’s PDE (see [31]).
Again, there is a whole family of these solutions, one for
any function that provides an initial condition.

Similar issues have been considered in work on pho-
tometric stereo. However, the photometric stereo work
addresses settings in which the reconstruction problem is
not underconstrained. For example, Coleman and Jain [9]
discuss recovery of structure for textured shapes with spec-
ularities, using four images. Onn and Bruckstein [24] show
how to use integrability to recover structure from two im-
ages when the scene has a uniform albedo. And Fan and
Wolff [10] consider recovery of structure and albedo from
three images.

In contrast, we have shown that given two images of an
object with unknown structure and albedo, there is always a
large family of solutions. In fact, for any pair of point light
sources there is a family of possible solutions. We have
shown that given known light sources, we can determine
two independent components of the Hessian of the surface
at any position, but not the third. The direction in which
we can determine these components may vary throughout
the image, depending both on the light sources and the ratio
image. Finally, even for unknown lighting conditions, the
ratio image r still provides information — albeit imprecise
information — about the local nature of the object’s surface.

4 Determining the Simplicity of Interpreta-

tions

We cannot tell that two images must come from different
objects. We now turn instead to determining whether in
some cases, explaining the images with a common object
would require an unlikely coincidence. This approach to
image interpretation has been applied to other vision prob-
lems by, for example, Rock [25], Lowe [17], and Freeman
[11].

Specifically, we begin by showing that the ratio of two
images from the same object is generally simpler than either
of the individual images, while the ratio of images from
different objects is generically more complex than either
image.

As previously noted, the image of an object is
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and the ratio of two images from the same object is
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However, suppose our second image J' is of a different
object, whose surface is described by the function z =
g(z,y), and whose albedo is described by the function
B(z,y). Then we have as the ratio image
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In many instances Equation 3 describes a simpler ratio
image than Equation 4, unless the extra multiplicative term

a2+ f2+1

B /93 +9g;+1

happens to cancel the rest of the equation.

Consider the case in which local surface patches of f
and g, and their respective albedo functions « and (3 are
well approximated by second degree polynomials in z and
y. In this case, the ratio image r from Equation 3 is a
rational function with both a linear numerator and denom-
inator. However, the ratio of images from different objects
r' (Equation 4) is the product of an algebraic function and
a rational function with third degree polynomials in the de-
nominator and numerator. The degree of a polynomial (or
parameters in an algebraic expression) needed to approxi-
mate a function is often used as a measure of that function’s
simplicity. By that measure, in this case we see that the
ratio of images from the same object is far simpler than the
ratio of images from two different objects. This simplicity
generally translates into simpler properties, such as fewer
extrema and, in many cases, less overall variability in the
ratio image.

Similar reasoning holds in other cases as well. Of special
interest is the case in which the surfaces f and g are locally
planar. In this case, the ratio of two images from the
same object is constant. However, the ratio of images
from different objects is only constant if their albedos are
identical up to a scale factor,in which case the differences in
the albedo patterns cannot in principal be discerned unless
the magnitude of the lighting is known.

We can now relate these results to those in the previ-
ous section in a brief, intuitive form. We showed that the
shape of an object lit by point sources could be derived by
integrating the ratio image along its characteristic curves.
These results suggest that we can attempt to measure the
likelihood that two images come from the same object by
measuring the simplicity of the ratio image.

S Experiments Using a Simple Comparison
Method

Our results suggest a number of ways of attempting to mea-
sure whether the difference between two images is due to a
difference in lighting or in object structure. In this section,

we experiment with only the simplest of these on the task
of recognizing faces under variable illumination conditions.
A simple measure of the complexity of the ratio image is
the integral of the magnitude of its squared gradient. This
measures the smoothness of the ratio image. Such measures
have often been used in vision, for example in interpolating
surfaces by minimizing the curvature of the interpolation
(some early methods are reviewed in [18]). This measure
has the advantage of being local, and therefore, the analysis
we have done assuming point light sources and low degree
polynomial surfaces must hold only locally to apply.

Now notice that the squared magnitude of the gradient

of the ratio image
I
v(=
H (J)

has two significant disadvantages: first, it is asymmetric in
I and J, and second, it behaves poorly for regions of image
J which are in shadow. To correct for the asymmetry, we
instead use the geometric mean

FGIFG)]

To correct for the behavior in the shadowed regions, we
weight the measure by the min(Z, J). Thus to compare
images I and J, we simply integrate this quantity over the
image region to get

[ frmorn e (3)][+ (3)

With straight-forward algebraic manipulation, one can
show the surprising similarity of this measure to a mea-
sure simply comparing image edges. In some sense, we
have come full circle, using a Lambertian model for image
formation to justify an edge-based measure of comparison.
Yet, this measure has two important differences from sim-
ple edge-based matching: first, this measure does not make
any hard decisions about the presence or absence of an
edge, and second, it normalizes the response by the local
image intensity. The measure proposed here is probably
most closely related to the log filter described in Ballard
and Brown [2] followed by a gradient highpass filter.

We experimented with this measure on the task of face
recognition under variable illumination. We used a publicly
available database of faces constructed by Hallinan [14].
From this database we used 450 images of 10 individuals.
The images were divided into four subsets in which the
lighting directions within the subsets were 15° (Subset 1),
30° (Subset 2), 45° (Subset 3), and 60° (Subset 4) from the
camera’s optical axis. Figure 1 shows images of one face
from each of these subsets. Faces lit at a 15° angle (Subset
1) were used as a training set, and then tested using images
in which the lighting had greater eccentricity. To discount
the effects of improper alignment, each image was aligned
manually and cropped as shown in Figure 1. Figure 2 shows
the comparative performance of the method proposed here
and three competing methods.

These results show that the squared magnitude of the
gradient of the ratio image works dramatically better than
simple correlation, or correlation after projecting onto the

2

dxdy.



Figure 1: Pictures from the Harvard Face Database. The
pictures are of the same individual lit by varying the direc-
tion of a point light source. The angle of the light source
with the optical axis (15, 30, 45, and 60 degrees) is the
same in each column.

twenty principal components of the training images (as de-
scribed in [27]). However, it does not perform as well as the
illumination cones method which builds a representation
for the set of possible images from a small set of training
images [4, 13]. (Adini, Moses, and Ullman [1] have also
reported experiments on face recognition under variable il-
lumination. We have not yet been able to compare these
methods on their database.)

In comparing this measure to others, one should note
that it does not attempt to combine information from a
number of training images to build up as representation
of a face, as do methods such as Fisherfaces [3], the lin-
ear subspace method [3], or the illumination cones method
[13]. When enough training images are available to well
characterize the entire set of images that a face can produce,
we expect that one should achieve better performance with
these methods, and our experiments seem to support this.
However, our method simply compares a new image in-
dependently to each previously seen image. We feel that
this type of approach, and indeed the results of our paper
in general, are most suited to the situation in which one
does not have enough prior information about an object to
attempt to accurately characterize its possible appearances.

6 Difficulties with Representation

We have considered an approach to recognition in which
two images are compared to judge whether they appear to
come from the same object. An alternative approach is to
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PCA (20) 0.0 3.3 48.5 76.5
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Illumination Cones 0.0 0.0 0.0 10.0

Figure 2: A measure of comparison based on the magnitude
of the gradient of the ratio image significantly outperforms
both correlation and principal component analysis (PCA)
on database of 450 faces of 10 individuals taken under
extreme variation in lighting conditions.

use a number of training images to build a representation
of the set of all images that an object can produce. This
has been done effectively to account for viewpoint variation
(e.g., [29]), and to account for lighting variation when the
training images are each lit with a single point source ([19,
26, 4]). The illumination cones method [13] tested in the
previous section is one such method. We now consider
the difficulties in generating a representation of an object’s
possible images when the training images are taken under
uncontrolled conditions, containing multiple light sources.

Belhumeur and Kriegman show how to build an exact
representation of the images that a polyhedral object can
produce when lit with multiple sources, which they call the
illumination cone. Their method requires at least three im-
ages of the object each illuminated by a single light source.
It is also evident from their results that given many images
of the object, each of which contains multiple light sources,
taking the convex combination of these images produces a
subset of the illumination cone which can provide a good
approximation to it. It is not clear, however, whether it is
possible to build the illumination cone exactly using train-
ing images that contain multiple light sources. In this sec-
tion we show that this is not possible. We take this as one
indication of the potential difficulty of building a complete
representation of an object’s possible images using a small
number of training images taken under uncontrolled view-
ing conditions. For such situations, it remains valuable to
develop methods for directly comparing images.



We show that the illumination cone cannot be con-
structed from a set of images that contain multiple, un-
known lights, by showing that a much simpler problem
is not solvable. We show that even if one knows the 3-
D structure of a convex-shaped Lambertian object exactly,
one cannot in general determine the albedo of the object
points exactly, even from a large set of images.

Let p; be a facet on a polyhedral object, let J; be the
corresponding intensity produced in the image, J. Denote
p;’s surface normal pointing inward towards the object as
n;. Let the albedo at this object facet be a;. Assume that
there are m light sources, denoted sy, ..., s,,,. Then, with a
Lambertian surface, we have

m
Jj = Zmam(O,ajnj - Sk).
k=1

Belhumeur and Kriegman [4] have shown that with this
lighting model, the set of all images that a Lambertian
object can produce forms a convex cone in the space, R",
of all images, where each coordinate of the space is the
intensity value of a different pixel in the image. Let C
denote the convex cone of images that could be produced
by this object if the albedo of all its points were equal and
set to unity; we refer to this as the constant albedo object.
We can then describe the set of images the actual object
can produce as follows. Let A be a diagonal matrix, with
diagonal entries a;, ...a,, denoting the albedo. Then the
actual object can produce all images of the form Ac such
that ¢ € C is a column vector describing one of the images
that the constant albedo object could produce. This tells
us that if J is a column vector whose entries are the pixel
intensities of an image of the actual object, we must have

J=Ac,ceC=A"'JeC.

C is aconvex polytope that is defined by a set of IV bounding
half-planes, which all pass through the origin. We can
define each half-plane by a normal vector H;, so that a
point, p, is inside the half-plane when p - H; > 0. So

ceC=c-H;>0,i=1,...,N.
This tells us that
(A7'J)-H; >0,i=1,...,N.

This is a series of inequalities that are linear in the inverse of
the object albedos, since the image J and the illumination
cone (i.e., the H;) of the constant albedo object are both
known. This tells us that a single image of an object that
has known surface normals constrains the albedos of the
object to lie inside a convex polytope in the space of all
possible inverse albedos.

Suppose we have many images of the same object avail-
able. The true albedos of the object lie inside the inter-
section of a set of convex polytopes in albedo space. The
intersection of these polytopes gets smaller and smaller as
we have more images available, constraining the possible
object albedos. However, the true albedos do not lie on the
boundary of any of these convex polytopes unless a point

in the object has a light source lying in its tangent plane!.
Hence, the intersection of these convex polytopes is still
an open set in albedo space, and the albedos of the object
are not uniquely determined. On the other hand, given
images from objects with the same structure but different
albedos, these convex cones in inverse albedo space can be
non-intersecting, revealing that the objects are different.

These results illustrate the following point: it may be
impossible to determine a complete representation of the
images that an object can produce, using multiple images
taken under uncontrolled conditions. However, we still
may be able to tell whether a new image is consistent with
one or more previous images we have seen. We have shown
this to be true for the simple case of a convex object with
known structure but unknown albedo.

The results in this section are closely related to Forsyth’s
[12] color constancy algorithm. That work dealt with a very
different problem, that of determining the color of patches
of a planar scene from a single image in which the spectrum
of the illumination is unknown. However, our derivation
is similar. In Forsyth’s case the appearance of all possible
color chips under a known light source plays the role that
is played by the illumination cone of a known model in our
case. For Forsyth, the appearance of each patch of uniform
color in the scene plays the role that each image plays in
our derivation. Forsyth uses these to constrain the unknown
illuminant function in a scene in much the same way that
we constrain the unknown albedo. The key difference is
that for color constancy one derives a convex constraint
from every different color in the scene, where in our case
there is a comparable constraint produced by every image,
so that many images may be required to narrow down the
solution.

7 Conclusions

Model-based recognition methods have achieved consid-
erable success when they have adequate prior knowledge
to build a precise object model that captures its 3-D struc-
ture. However, in some applications, this prior knowledge
is not available. It is also an open question whether hu-
man object recognition routinely functions with sufficient
prior knowledge of objects to construct and use precise 3-D
models.

For this reason, we argue that the information that an
image provides about an object may be best thought of as
information about what other images are likely, or unlikely
to come from the same object. We have made this concrete
for the case of illumination variation. We have shown
that it can be difficult to exactly recover the properties of an
object, such as its albedo, from images in which the lighting
conditions are unknown. At the same time, we have shown
that there may be considerable information about whether
two images either do or do not come from the same object.
Therefore we may be able to use previously seen images
of an object to recognize it in new images under variable
lighting conditions, even without using these prior images
to perform any sort of explicit or implicit reconstruction of
any object properties.

IStrictly speaking, this is true only when C has volume in R™. If it
doesn’t we must restate our argument to focus on only the subset of object
points that have distinct surface normals. Our basic argument still holds,
however.



We have also used these insights in a recognition system.
‘We have shown that the simplicity of the ratio of two images
provides a good indication of whether they come from the
same object; we measure this simplicity by looking at the
gradient of the ratio image. This approach is simple and
local, but provides good results.
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