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As the number of 3D models available on the Web grows, there is an increasing need for a search
engine to help people find them. Unfortunately, traditional text-based search techniques are not
always effective for 3D data. In this paper, we investigate new shape-based search methods.
The key challenges are to develop query methods simple enough for novice users and matching
algorithms robust enough to work for arbitrary polygonal models. We present a web-based search
engine system that supports queries based on 3D sketches, 2D sketches, 3D models, and/or text
keywords. For the shape-based queries, we have developed a new matching algorithm that uses
spherical harmonics to compute discriminating similarity measures without requiring repair of
model degeneracies or alignment of orientations. It provides 46-245% better performance than
related shape matching methods during precision-recall experiments, and it is fast enough to
return query results from a repository of 20,000 models in under a second. The net result is a
growing interactive index of 3D models available on the Web (i.e., a Google for 3D models).

Categories and Subject Descriptors: H.3 Information storage and retr€eatgnt analysis and indexing:
Indexing methods
General Terms: Reliability, Experimentation, Human factors

Additional Key Words and Phrases: Search engine, Shape retrieval, shape matching, shape rep-
resentation

1. INTRODUCTION

Over the last few decades, computer science has made incredible progress in computer-
aided retrieval and analysis of multimedia data. For example, suppose you want to obtain
an image of a horse for a Powerpoint presentation. A decade ago, you could: 1) draw a
picture, 2) go to a library and copy a picture, or 3) go to a farm and photograph a horse.
Today, you can simply pick a suitable image from the millions available on the web. Al-
though web search is commonplace for text, images, and audio, the information revolution
for 3D data is still in its infancy.

However, three recent trends are combining to accelerate the proliferation of 3D models,
leading to a time in the future when 3D models will be as ubiquitous as other multimedia
data are today: (1) new scanners and interactive tools are making construction of detailed
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3D models practical and cost effective, (2) inexpensive graphics hardware is becoming
faster (at % Moore’s Law), causing an increasing demand for 3D models from a wide
range of people, and (3) the web is facilitating distribution of 3D models.

These developments are changing the way we think about 3D data. For years, a primary
challenge in computer graphics has been how to construct interesting 3D models. In the
near future, the key question will shift from “how do we construct them?” to “how do
we find them?”. For example, consider a person who wants to build a 3D virtual world
representing a city scene. He will need 3D models of cars, street lamps, stop signs, etc.
Will he buy a 3D modeling tool and build them himself? Or, will he acquire them from a
large repository of 3D models on the Web? We believe that research in retrieval, matching,
recognition, and classification of 3D models will follow the same trends that can already
be observed for text, images, audio, and other media.

An important question then is how people will search for 3D models. Of course, the
simplest approach is to search for keywords in filenames, captions, or context. How-
ever, this approach can fail: (1) when objects are not annotated (e.g., “B19745.wrl"), (2)
when objects are annotated with inspecific or derivative keywords (e.g., “yellow.wrl” or
“sarah.wrl”), (3) when all related keywords are so common that the query result contains
a flood of irrelevant matches (e.qg., searching for “faces” —i.e., human not polygonal), (4)
when relevant keywords are unknown to the user (e.g., objects with misspelled or foreign
labels), or (5) when keywords of interest were not known at the time the object was anno-
tated.

In these cases and others, we hypothesize that shape-based queries will be helpful for
finding 3D objects. For instance, shape can combine with function to define classes of
objects (e.g.roundcoffee tables). Shape can also be used to discriminate between similar
objects (e.g., desk chairs versus lounge chairs). There are even instances where a class is
defined entirely by its shape (e.g., things that roll). In these instances, “a picture is worth a
thousand words.”

Our work investigates methods for automatic shape-based retrieval of 3D models. The
challenges are two-fold. First, we must develop computational representations of 3D shape
(shape descriptojdor which indices can be built and similarity queries can be answered
efficiently. In this paper, we describe novel methods for searching 3D databases using
orientation invariant spherical harmonic descriptors. Second, we must find user interfaces
with which untrained users can specify shape-based queries. In this paper, we investigate
combinations of 3D sketching, 2D sketching, text, and interactive refinement based on
shape similarity. We have integrated these methods into a search engine that provides a
publicly available index of 3D models on the Web (Figure 1).

The paper is organized as follows. The following section contains a review of related
work. Section 3 provides an overview of our system, while discussion of the main re-
search issues appears in Sections 4-7, and implementation details are provided in Section 8.
Section 9 presents experimental results of studies aimed at evaluating different query and
matching methods. Finally, a brief summary and conclusion appears in Section 10, fol-
lowed by a discussion of topics for future work in Section 11.
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Fig. 1. Screenshot of our search engine for 3D models. It allows a user to specify a query using
any combination of keywords and sketches (left). Then, for each query, it returns a ranked set of
thumbnail images representing the 16 best matching 3D models (right). The user may retrieve any of
the 3D models by clicking on its thumbnail, and/or he may refine the search by editing the original
input or by clicking on the “Find Similar Shape” link below any thumbnail.

2. RELATED WORK

Data retrieval and analysis have recently been a very active area of research [Duda et al.
2001; Lesk 1997]. The most obvious examples are text search engines (e.g., Google [Brin
and Page 1998]), which have become part of our daily lives. However, content-based re-
trieval and classification systems have also been developed for other multimedia data types,
including audio [Foote 1999], images [Castelli and Bergman 2001], and video [Veltkamp
et al. 2001].

Retrieval of data based on shape has been studied in several fields, including computer
vision, computational geometry, mechanical CAD, and molecular biology (see [Alt and
Guibas 1996; Arman and Aggarwal 1993; Besl and Jain 1985; Loncaric 1998; Pope 1994;
Veltkamp 2001] for surveys of recent methods). However, most prior work has focused
on 2D data [Flickner et al. 1995; Jacobs et al. 1995; Ogle and Stonebraker 1995]. For
instance, several content-based image retrieval systems allow a user to sketch a coarsely
detailed picture and retrieve similar images based on color, texture, and shape similarities
(e.g., [Jacobs et al. 1995]). Extending these systems to work for 3D surface models is
non-trivial, as it requires finding a good user interface for specifying 3D queries and an ef-
fective algorithm for indexing 3D shapes. One problem for indexing 3D surfaces is bound-
ary parameterization. Although the 1D boundary contours of 2D shapes have a natural
arc length parameterization, 3D surfaces of arbitrary genus do not. As a result, common
shape descriptors for 2D contours (e.g., [Arbter et al. 1990; Arkin et al. 1991; Kashyap
and Chellappa 1981; Lin et al. 1992; Uras and Verri 1994; Young et al. 1974]) cannot
be extended to 3D surfaces, and computationally efficient matching algorithms based on
dynamic programming (e.g., [Tappert 1982; Tsai and Yu 1985]) cannot be applied to 3D
objects. Another problem is the higher dimensionality of 3D data, which makes registra-
tion, finding feature correspondences, and fitting model parameters more expensive. As a
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result, methods that match shapes using geometric hashing [Lamdam and Wolfson 1988]
or deformations [Amit et al. 1991; Jain et al. 1996; Pentland and Sclaroff 1991; Sclaroff
and Pentland 1995; Terzopoulos and Metaxas 1991]) are more difficult in 3D.

Shape-based recognition of 3D objects is a core problem in computer vision. However,
in vision, images or range scans of objects are usually obtained from specific viewpoints,
in scenes with clutter and occlusion. Range images require partial surface matching [Besl
and McKay 1992; Chen and Medioni 1992; Curless and Levoy 1996; Turk and Levoy
1994], and 2D images are further complicated by perspective distortions and lighting vari-
ations. Often these problems are addressed by methods that search for local correspon-
dences between features (e.g., [Grimson 1990; Johnson and Hebert 1999; Lamdan et al.
1990; Lowe 1985]), which are expensive and do not readily lead to an indexable represen-
tation. Rather, we focus on 3D models of isolated objects (e.g., a bunny or a teapot) in 3D
model files intended for computer graphics visualization or inclusion in a virtual world.
While these models are mostly free of sensor noise and occlusions, they usually contain
only unorganized sets of polygons (“polygon soups”), possibly with missing, wrongly-
oriented, intersecting, disjoint, and/or overlapping polygons. The lack of a consistent solid
and surface model makes them difficult for shape analysis. Meanwhile, fixing degenerate
models is a difficult open problem [Barequet and Kumar 1997; Gueziec et al. 1998; Murali
and Funkhouser 1997].

For 3D object models, most shape analysis work has focused on registration, recogni-
tion, and pairwise matching of surface meshes. For instance, representations for registering
and matching 3D surfaces include Extended Gaussian Images [Horn 1984], Spherical At-
tribute Images [Delingette et al. 1992; 1993], Harmonic Shape Images [Zhang and Hebert
1999], Shape Contexts [Belongie et al. 2001; Mori et al. 2001], Spin Images [Johnson and
Hebert 1999]. Unfortunately, these previous methods usually require either a priori reg-
istration of objects’ coordinate systems or search to find pairwise correspondences during
matching. Volumetric dissimilarity measures based on wavelets [Gain and Scott 1999] or
Earth Mover’s Distance [Rubner et al. 1998] assume that a topologically valid surface mesh
is available for every object. Other approaches are based on comparing high-level repre-
sentations of shape, such as generalized cylinders [Binford 1971], superquadrics [Solina
and Bajcsy 1990], geons [Wu and Levine 1994], shock graphs [Siddiqgi et al. 1998], medial
axes [Bardinet et al. 2000], and skeletons [Bloomenthal and Lim 1999; Blum 1967; Hilaga
et al. 2001; Storti et al. 1997]. Methods to compute these representations are usually time-
consuming and sensitive to small features. Also, most do not readily lead to a means for
indexing a large database [Shokoufandeh et al. 1999].

Finally, shapes have been indexed based on their statistical properties. The simplest
approach represents objects with feature vectors [Duda et al. 2001] in a multidimensional
space where the axes encode global geometric properties, such as circularity, eccentricity,
or algebraic moments [Prokop and Reeves 1992; Taubin and Cooper 1992]. Other meth-
ods have considered histograms of geometric statistics [Aherne et al. 1997; A.P.Ashbrook
et al. 1995; Besl 1995; Evans et al. 1992; Osada et al. 2001]. For instance, Ankerst et
al. [Ankerst et al. 1999] proposed shape histograms decomposing shells and sectors around
a model’s centroid. Besl [Besl 1995] used histograms of the crease angle for all edges in
a 3D triangular mesh. Osada et al. [Osada et al. 2001] represented shapes with proba-
bility distributions of geometric properties computed for points randomly sampled on an
object’s surface. Often these statistical methods are not discriminating enough to make
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subtle distinctions between classes of shapes (e.g., living room chairs versus dining room
chairs).

While several projects have been investigating 3D search engines concurrently with
ours [Paquet and Rioux 2000; Suzuki 2001], they are mainly focused on specific data
types, such as mechanical CAD parts (e.g., [Berchtold and Kriegel 1997; Bhanu 1987;
Regli 2001; Ikeuchi and Flynn 1995]), protein molecules (e.g., [Ankerst et al. 1999; Kas-
tenmilller et al. 1998]), or cultural artifacts [Rowe et al. 2001; Schurmans et al. 2001]. Oth-
ers only support queries based on text and file attributes (e.g., [MeshNose 2001]). To our
knowledge, no previous system has: (1) indexed a large repository of computer graphics
models collected from the Web, (2) supported 2D and 3D sketching interfaces for shape-
based queries, or (3) studied interactions between text and shape in the search for 3D data.
These topics are investigated in this paper.

3. SYSTEM OVERVIEW

The organization of our system is shown in Figure 2. Execution proceeds in four steps:
crawling, indexing, querying, and matching. The first two steps are performed off-line,

while the last two are done for each user query. The following text provides an overview
of each step and highlights its main features:

(1) Crawling: We build a database of 3D models by crawling the Web. 3D data still
represents a very small percentage of the Web, and high quality models represent an
equally small percentage of all 3D data. So, we have developed a focused crawler that
incorporates a measure of 3D model “quality” into its page rank. Using this crawler,
we have downloaded 17,834 VRML models from the Web. We augment this database
with 2,873 commercial models provided by 3D vendors [De Espona 2001; Viewpoint
2001].

(2) Indexing: We compute indices to retrieve 3D models efficiently based on text and
shape queries. In particular, we have developed a new 3D shape descriptor based on
spherical harmonics that is descriptive, concise, efficient to compute, robust to model
degeneracies, and invariant to rotations.

(3) Querying: We allow a user to search interactively for 3D models. Our system supports
guery methods based on text keywords, 2D sketching, 3D sketching, model matching,
and iterative refinement. We find that methods based on both text and shape combine
to produce better results than either one alone.

(4) Matching: For each user query, our web server uses its index to return the sixteen 3D
models that best match the query. Our method answers 3D shape queries in less than
a quarter of a second for our repository; and, in practice, it scales sub-linearly with the
number of indexed models.

The main research issue at the heart of this system is how to provide shape-based query
interfaces and matching methods that enable easy and efficient retrieval of 3D models
from a large repository. In the following two sections, we discuss these issues in detail for
different query interfaces.

4. SHAPE QUERIES

The most straight-forward shape-based query interface is to provide the search engine with
an existing 3D model and ask it to retrieve similar ones. Our search engine supports this
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Fig. 2. System organization.

strategy in two ways.

First, the user may type the name of a file to be uploaded from his computer (e.g.,
“c:\dolphin.wrl "), and then the system searches for 3D models with similar shapes.
This method is useful for finding more objects of the same type (e.g., given one chair, find
100 others) or for finding more instances of a specific 3D object (e.g., checking for illegal
copies of a proprietary model).

Second, the user may search for models with shapes like one returned in a previous
search by clicking on the “Find Similar Shape” link under its image on a results page (blue
text in Figure 1). This method is useful for iteratively refining searches to home in on a
specific class of objects.

The main challenge in supporting these 3D shape-based similarity queries is to find a
computational representation of shapslifape descriptgrfor which an index can be built
and geometric matching can be performed efficiently. Generally speaking, the following
properties are desirable for a shape descriptor. It should be: (1) quick to compute, (2) con-
cise to store, (3) easy to index, (4) invariant under similarity transformations, (5) insensitive
to noise and small extra features, (6) independent of 3D object representation, tessellation,
or genus, (7) robust to arbitrary topological degeneracies, and (8) discriminating of shape
differences at many scales.

Unfortunately, no existing shape descriptor has all these properties. Most high-level
shape representations, such as generalized cylinders [Binford 1971], superquadrics [Solina
and Bajcsy 1990], geons [Wu and Levine 1994], shock graphs [Siddiqi et al. 1999], medial
axes [Bardinet et al. 2000], and skeletons [Bloomenthal and Lim 1999; Hilaga et al. 2001;
Storti et al. 1997] require a consistent model of the object’s boundary and interior, which is
difficult to reconstruct for highly degenerate computer graphics models [Barequet and Ku-
mar 1997; Gueziec et al. 1998; Murali and Funkhouser 1997]. Other shape representations,
such as Extended Gaussian Images [Horn 1984], Spherical Attribute Images [Delingette
et al. 1992; 1993], moments [Prokop and Reeves 1992; Taubin and Cooper 1992], and
wavelets [Gain and Scott 1999], require a priori registration into a canonical coordinate
system, which is difficult to achieve robustly. Finally, statistical shape descriptors, such as
feature vectors [Duda et al. 2001] and shape distributions [Osada et al. 2001] are usually
not discriminating enough to distinguish between similar classes of objects.

We propose a novel shape-descriptor based on spherical harmonics. The main idea is

ACM Transactions on Graphics, Vol. V, No. N, 10 202002.



A Search Engine for 3D Models . 7

to decompose a 3D model into a collection of functions defined on concentric spheres
and to use spherical harmonics to discard orientation information (phase) for each one.
This yields a shape descriptor that is both orientation invariant and descriptive. While
the original shape cannot be reconstructed from this representation, comparison of two
descriptors provides a provable lower bound onfhelistance between them.

A significant advantage of our approach is that it can be indexed without registration of
3D models in a canonical coordinate system. While others have used spherical harmonics
to obtain multiresolution representations of shape [Saupe and Vrani 2001; Vranic et al.
2001], they require a priori registration with principal axes. In our experience, we find that
principal axes are not good at aligning orientations of different models within the same
class. Figure 3 demonstrates this problem for a collection of mugs. Despite the fact that
the mugs have similar shapes, the derived principal axes are quite different. The main
reason is that contributions to the second-order moments used for rotational alignment
scale quadratically with distance from the center of mass, which causes small differences
in the handles of the mugs to affect the principal axes significantly. The net result is poor
alignments and poor match scores for algorithms that rely upon them. Our method takes
advantage of phase elimination to avoid this problem.

Fig. 3. A collection of mugs drawn with their principal axes. Despite the similarity in the models, the
principal axes orient the models in very different ways.
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As compared to other rotation invariant shape signatures, we expect our spherical har-
monics descriptor to be more discriminating of similar shapes. It is unique up to rotations
of independent frequency components on concentric spheres and characterizes a shape at
different resolutions. Other rotationally invariant descriptors discard significantly more in-
formation. For example, Ankerst [Ankerst et al. 1999] uses a histogram of the distances
from each surface point to the object’s center of mass as a 1D descriptor. This amounts
to using the zero'th order spherical harmonic in each concentric shell. Our method en-
codes higher frequency information in a 2D descriptor, which provides more discriminat-
ing power.

The main steps for computing a spherical harmonics shape descriptor for a set of poly-
gons are shown in Figure 4:

(1) First, we rasterize the polygonal surfaces infdRax 2R x 2R voxel grid, assigning a
voxel a value oft if it is within one voxel width of a polygonal surface, and assigning
it a value of0 otherwise! We usually choosé to be~32, which provides adequate
granularity for discriminating shapes while filtering out high-frequency noise in the
original data.
To normalize for translation and scale, we move the model so that the center of mass
lies at the point R, R, R), and we scale it so that the average distance from non-zero
voxels to the center of mass 18/2. We use this approach rather than a simpler one
based on the center and radius of the bounding sphere because it is less sensitive to
outliers.

(2) We treat the voxel grid as a (binary) real-valued function defined on the set of points
with length less than or equal #® and express the function in spherical coordinates:

f(r,0,¢) = Voxel(rsin(0) cos(¢) + R, r cos() + R, rsin(f) sin(¢) + R)

wherer € [0, R], 6 € [0, 7], and¢ € [0,2x]. By restricting to the different radii we
obtain a collection of spherical functiokgy, f1, ..., fr} with:

fr(67¢) = f(T,ﬂ(b).

(3) Using spherical harmonics, we express each funcfioas a sum of its different fre-
quencies:

£r(0,0) =" (0, 9)

where

2m + 1) (m — |n|)!
4 (m+ |n|)!

P, (cos G)ei”(z’.

10,0 = S |

n=—m

(That is, the functiory;™ is the projection of the functioffi. onto them-th irreducible
representation of the rotation group acting on the space of spherical functions.)

INote: we do not attempt to reconstruct and fill the volumetric interior of the object so as to work with arbitrary
“polygon soups”, a general and commonly found class of computer graphics models. Fixing degenerate models
to form a consistent solid interior and manifold surface is a difficult open problem [Barequet and Kumar 1997;
Gueziec et al. 1998; Murali and Funkhouser 1997].
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(4) Noting that the different irreducible representations are fixed under rotation, and not-
ing that rotations do not change tlig norm of functions, we observe that the value
I/l does not change if we rotate the functign We define a rotation invariant
signature forf,. as the collection of scalafg| 0|, || f1], - - -}

(5) Combining these different signatures over the different radii, we obtain a two-dimensional
rotation invariantsspherical harmonics descriptdor the 3D model, with the value at
index(rqg, mg) corresponding to the length of the,-th frequency of the restriction of
f to the sphere with radius,.
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Fig. 4. Computing our spherical harmonics shape descriptor.

To compare two spherical harmonics descriptors, we simply compute the Euclidean dis-
tance between them. Retrieving thebest matches for a 3D query model is equivalent
to solving theK nearest-neighbors problem in a high-dimensional space. Although this
problem is known to be hard in the worst case, we can build a search algorithm that works
efficiently in practice by searching in multiple 1D spaces [Indyk and Motwani 1998]. Our
implementation works in two passes. In the first pass, we quickly compute a lower bound
for the distance between the query model and all models in the database by finding the
M-nearest neighbors on the projections of the space onto coordinateldxes-( K). In
the second pass we compute the true distance to the models, sorted by the lower bound
distance. We stop when the distance to the curfésth nearest model is smaller than
the smallest lower bound of the remaining models. When computing the true distance to
a model, we use the most significant spherical harmonics first, allowing us to stop when
the distance to that model is above our current threshold. In practice, a full comparison is
required for a small subset of the database (experimental results are presented in Section 9).

5. SKETCH QUERIES

Of course, shape similarity queries are only possible when the user already has a represen-
tative 3D model. In some cases, he will be able to find one by using a text search. However,
in other cases, he will have to create it from scratch (at least to seed the search).

An interesting open question then is “what type of modeling tool should be used to
create shapes for 3D retrieval queries?”. This question is quite different than the one asked
in traditional geometric modeling research. Rather than providing a tool with which a
trained user can create models with exquisite detail and/or smoothness properties, our goal
is to allow novice users to specify coarse 3D shapes quickly. In particular, the interface
should be easy to learn for first time visitors to a website. Of course, this requirement
rules out almost every 3D modeling tool available today — i.e., it would not be practical
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to require everybody who wants to use a 3D search engine to take a three week training
course to learn the complicated menu structure of a commercial CAD tool. Instead, we
have investigated two alternatives.

The first approach is to specify shape queries with a simple 3D sketching tool, such as
Teddy [Igarashi et al. 1999] or Sketch [Zeleznik et al. 1996]. To investigate this approach,
we have developed a query interface in which the user creates a simple 3D model with
Teddy [Igarashi et al. 1999], and then the system retrieves similar models using the match-
ing algorithms described in the previous section (see Figure 5). Unfortunately, our early
experiences suggest that even its simple gesture interface is still too hard for novice and
casual users to learn quickly. During informal studies, we observed that most people do not
readily understand “extrusions” and “cuts,” and they have a difficult time getting used to
rotating a 3D model to get the proper viewpoint for modeling operations. Moreover, only
certain types of shapes can be created with Teddy (blobby objects with topological genus
zero). We believe that making 3D tools even simpler would require further constraints on
the types of shapes that could be produced. Thus, we were motivated to look for alternate
sketching paradigms.

o msm s 3D Model Search Engine ——————

Keywords:

Fig. 5. 3D sketch query interface.

Our second approach is to draw 2D shapes with a pixel paint program and then have the
system match the resulting image(s) to 2D projections of 3D objects (Figure 6). The main
advantage of this approach is that the interface is easy to learn. All but the most novice
computer users have used a 2D paint program before, and there are no complicated viewing
or manipulation commands. Of course, the main disadvantage is that 2D images generally
have less shape information than 3D models. We compensate for this factor somewhat by
allowing the user to draw multiple 2D projections of an object in order to better define its
shape.

The main challenge in implementing this approach is to develop algorithms that match
2D sketches to 3D objects. This problem is significantly different than classical ones in
computer vision because the 2D input is hand-drawn rather than photographic and the
interface is interactive. Thus, we must consider several new questions: How do people
draw shapes? What viewpoints do they select? How should the interface guide or con-
strain the user’s input? What algorithms are robust enough to recognize human-drawn
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T mem e 3D Model Search Engine ————7—

Keywords: ‘

Fig. 6. 2D sketch query interface.

sketches? These are big questions, with implications well beyond the scope of this paper.
Unfortunately, the vast literature on how trained artists draw [Reyna 1996], how people
use characteristic views [Palmer et al. 1981], and how computers recognize photographic
images [Grimson 1990] is not directly applicable in our case. Rather, we are interested
in how untrained artists make quick sketches and how a computer can match them to 3D
objects.

To investigate these questions, we first ran a pilot study in which 32 students from an
introductory computer science class were instructed to “draw the shape<aflgact>"
for eight different objects. The students were only told what to draw, not how to draw
it, and they had only 15 seconds for each object. What we found is that people tend
to sketch objects with fragmented boundary contours and few other lines, they are not
very geometrically accurate, and they use a remarkably consistent set of view directions
(see Figure 7). Interestingly, the most frequently chosen views wetreharacteristic
views [Palmer et al. 1981], but instead ones that were simpler to draw (front, side, and
top views). These results give us clues about how to match sketches to 3D objects in our
system.

For a set of sketches entered by a user, we match them to projected images of 3D models
rendered from different viewpoints and return the best matches (as in [Murase and Nayar
1995] and others). During a preprocessing phase, we render thumbnail images with the
boundary contours of each 3D object as seen from 13 orthographic view directions. As
shown in Figure 8, we take viewpoints at the center of the three faces, the four top corners,
and the middle of six edges of a cube (tilt viewsThen, for each query with sketches,
we compute the match score for any 3D object as the minimal sum @dut of 13m)
pairwise sketch-to-thumbnail dissimilary scores, subject to the constraint that no thumbnail
can be matched to more than one sketch. This sampling ensures that any sketched view is
within 22.5° of a sampled view. Moreover, it also takes advantage of the fact that some
3D models will be aligned with Cartesian axes, in which case our sampled views perfectly
match the views preferred by users. We enhance this effect even further by labeling three

20ur matching method is invariant to rotations and reflections, so views rotated around the view direction or from
the opposite side of the object are not needed.
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Fig. 7. Sketches by people simply asked to “draw the shape of a” camaro car, cow, dog, human with
arms out, mug, DC10 airplane, and sofa.

sketch windows “Side View,” “Front View,” and “Top View” in our system.

AR B G N

(a) 3 Side views (b) 4 Corner views

A (VI

(c) 6 Tilt views

Fig. 8. 2D boundary contours rendered from 13 views of each object.

Matching hand drawn sketches to projected silhouettes of 3D models poses another
problem. Although we prompt users with example sketches containing clean boundary
contours, user input is often made up of fragmented sketch marks. Thus, we cannot use
efficient contour matching algorithms (e.g., [Arbter et al. 1990; Arkin et al. 1991; Uras and
Verri 1994]). Instead, we compare sketches and rendered views with an image matching
method. To handle deformations and geometric inaccuracies, we first apply the distance
transform to both the sketch and rendered image. This helps make our method robust to
small variations in the positions of lines, as in Chamfer matching [Barrow et al. 1977]
and Hausdorff matching [Huttenlocher et al. 1993]. It also provides an indexable distance
measure.

For cases where 3D models are arbitrarily oriented, the image matching method must
be robust to reflections and rotations in the image plane. To address this issue, we use a
2D analog of the spherical harmonics method described in the previous section. Figure 9
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demonstrates the details of our process: (1) Compute the distance transform of the bound-
ary contour. (2) Obtain a collection of circular functions by restricting to different radii.

(3) Expand each circular function as a sum of trigonometric functions. (4) Using the fact
that rotations do not change the amplitude within a frequency, define the signature of each
circular function as a list of the amplitudes of its constituent trigonometrics. (5) Finally,
combine these different signatures to obtain a 2D signature for the boundary contour. We
index these descriptors using the same nearest neighbor search method described in Sec-
tion 4. This method is inspired by Zahn and Roskies’ work on Fourier Descriptors [Zahn
and Roskies 1972], which provides a rotation invariant signature for boundary curves, ob-
tained by computing the Fourier series and storing only the amplitude of each frequency
component.

Amplitude
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Fig. 9. Computing our shape descriptor for boundary contours.

6. TEXT QUERIES

Our system also supports searching for 3D models by matching keywords in their textual
descriptions. To support this feature, we construct a representative document for each 3D
model. The text in that document includes the model filename, the anchor and nearby text
parsed from its referring Web page, and ASCII labels parsed from inside the model file.
For instance, we include part names (e.g., "'DEF” nodes in VRML), texture file names, and
informational fields (e.g., the "WorldInfo” node in VRML).

Each document is preprocessed by removing common watdg (vord} that don't
carry much discriminating information, such as “and”, “or”, “my”, etc. We use the SMART
system’s stop list of 524 common words as well as words specific to our domain (e.g.
“Ipg”, “www”, “transform”, etc.) [Salton 1971]. Next, the text is stemmed (normalized by
removing inflectional changes) using the Porter stemmer [Porter 1980]. Finally, synonyms
of the filename (without the extension) are added using WordNet [Miller 1995].

In order to match documents to user-specified keywords or to other documents, we
use theTF-IDF/Rocchiomethod [Rocchio 1971], a popular weighting and classification
scheme for text documents. This method assigns a similarity score based on a term'’s fre-
guency in the document and its inverse frequency over all documents. We use the Bow
toolkit [McCallum 1996] in our implementation.

3We found that including comments is counter-productive, as models often contain commented-out geometry,
which floods the documents with indiscriminating keywords.
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7. MULTIMODAL QUERIES

Since text and shape queries can provide orthogonal notions of similarity corresponding to
function and form, our search engine allows them to be combined.

We support this feature in two ways. First, text keywoessl 2D/3D sketches may
be entered in a single multimodal query. Second, text and shape information entered in
successive queries can be combined so that a user can refine search terms adaptively. For
instance, if a user entered text keywords in a first query, and then clicked a “Find Similar
Shape” link, the text and 3D shape would combine to form a second query.

These types of multimodal queries are often helpful to focus a search on a specific sub-
class of objects (Figure 10). For example, a query with only keywords can retrieve a class
of objects (e.g., tables), but it is often hard to home in on a specific subclass with text
alone (e.g., round tables with a single pedestal). Similarly, a query with only a sketch can
retrieve objects with a particular shape, but it may include objects with different functions
(e.g., both tables and chairs). Multimodal input can combine ways of describing objects to
form more specific queries (Figure 10(c)).

Be=w = =iz | |RTEe
=R L BREZ | [BE-D
(a) Text query (b) 2D sketch query (c) Multimodal query

Fig. 10. Multimodal queries are often effective at finding specific types of objects.

In order to find theK top matches for multimodal queries, we find the hekimatch
scores for each mode separately (> K), mean-normalize them (so the mean is 0 and
the variance is 1) to avoid over-weighting any query interface, and then retukhrtinedels
with the highest average normalized scores. Currently, we chiiosel6 and M = 128.
This method strikes a balance between returning the intersection of match results returned
by different modes (which is useful for finding specific objects) and returning their union
(which is useful for finding all objects within a class). Later, we plan to allow users to
control how search terms are combined (e.g., “OR” and “AND” qualifiers).

8. IMPLEMENTATION

We have implemented our 3D search engine in C/C++, Java, and Perl. The main compo-
nents are shown in Figure 11. All components run under Red Hat Linux 7, except for the

web server (Solaris 8) and the 3D model conversion (Irix 6.5). This section describes the
flow of data through the system and its implementation details.

The crawler is written in Perl, and runs on three 933 MHz Pentium Il machines, each
with 1 GB memory. Each crawler process is multithreaded and downloads files using up
to 50 simultaneous connections. It searches for AutoCAD, LightWave, PLY, 3D Studio,
VRML, and Wavefront files, possibly contained within pkzip, gzip, or Iharc compressed
archives. We initially seed it with URLs returned by Google and other search engines for
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Fig. 11. Flow of data through the search engine. The data shown in blue text is stored in the repository.

queries such as "3D AND (models OR meshes)”. Each page retrieved is scored as follows.
For 3D models, the score is an estimate of its “quality” (currently we use the logarithm of
the triangle count). For HTML pages, the score is a count of keywords contained within
the title and body text that suggest its relationship to 3D model files (e.g., “3D model”
“Wavefront object” etc.). Each unvisited URL is assigned a priority that is a weighted
sum of: 1) a distance-weighted average of the scores of documents linking to it, 2) a
distance-weighted average of model scores for models nearby in the link graph, and 3) a
site score that reflects the proportion of documents retrieved from the site that are models.
We maintain a hash table of visited URLSs to avoid visiting pages more than once.

Every downloaded 3D model goes through several preprocessing steps. We convert first
to the VRML 2 format (generally using PolyTrans [Okino 2001]) and then to the Ply format
in order to simplify parsing in later steps. Then, we extract text, create thumbnail and 2D
contour images, and compute shape signatures. Once in a while, the recently downloaded
models are added to the repository and all indices are updated. To compute the 3D shape
descriptor for a model, we rasterize its polygonal surfaces into a 64x64x64 voxel grid,
which is then decomposed into 32 concentric spheres. We compute the amplitudes of the
first 16 harmonics for each sphere using [SpharmonicKit 2.5 1998]. The net result is a
16x32 shape descriptor. The shape analysis process takes 1.6 seconds per model with 3500
polygons on average (it is dominated by the time to rasterize polygons into the voxel grid).
To compute the 2D shape descriptor for each thumbnail image, we downsample to 64x64
pixels and apply the same procedure. The 2D computation takes only 0.4 seconds per
image.

For each query, the web server communicates via TCP to a matching server (running on
a Dell Precision 530 PC with two 1.5GHz Pentium Il processors and 1 GB of memory).
There, a Perl job control script forks a separate process for each incoming query. Text
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queries are stemmed and passed directly to the Bow toolkit clagsifigrow [McCal-

lum 1996]. For 2D sketches and uploaded 3D model files a shape signature is computed
and compared against an in-memory index by a separate shape matching process. All
match results (model ids, scores, statistics) are returned to the web server, which constructs
a web page with results and returns it to the user. Match results are cached to enable fast
browsing of multiple results pages.

9. EXPERIMENTAL RESULTS

In this section, we report data collected during a series of experiments with our 3D search
engine. The goals of these experiments are: (1) to evaluate how well our shape matching
methods work, (2) to test whether shape can combine with text to provide more effective

search tools, and (3) to characterize the experiences of people using our web site.

9.1 Shape Matching Results

In our first experiment, we aim to test how well our new 3D spherical harmonics matching
algorithm finds similar objects. In order to investigate this question in a controlled manner,
independent of user input, we ran a series of experiments in which we matched each model
in a database with all others and analyzed how well the computed ranks correlate with a
human'’s classification of the models.

While the purpose of the experiment is mainly to evaluate our matching algorithm, the
results are indicative of how well our search engine works when a user provides his own
3D model and asks our system to find similar ones, or when a user clicks on the “Find
Similar Shape” link under the image of an object returned by a previous query.

For this experiment, we used a test database with 1890 models of “household” and
“miscellaneous” objects provided by Viewpoint [Viewpoint 2001]. The models contain
between 120 and 120,392 triangles, with a median of 1,536 triangles per object (mean
and standard deviation are 3,504 and 6,656, respectively). Every model came annotated
with at least a few descriptive keywords (e.g., “chair, folding”). Objects were clustered
into 85 classes based on functional similarities, largely following the groupings provided
by Viewpoint. Examples from ten representative classes are shown in Figure 12. The
smallest class had 5 models, the largest had 153 models, and 610 models did not fit into

any meaningful class.

[T —————

12 dining tables

Cormgn® 200 Sepocofbaton s s Pr—— .

153 diningroom chairs 25 livingroom chairs

S P——

8 chests 16 beds

5
36 end tables 39 vases 28 bottles 9 chandeliers 5 candelabra

Fig. 12. Samples from ten representative classes from the Viewpoint “household” and “miscella-
neous” database (images courtesy of Viewpoint).
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We chose this Viewpoint database because it provides a representative repository of
models with uniform quality and it is difficult for shape-based classification. In particular,
several distinct classes contain objects with very similar shapes. For example, there are
five separate classes of chairs (153 dining room chairs, 10 desk chairs, 5 director’s chairs,
25 living room chairs, and 6 lounge chairs, respectively). Meanwhile, there are objects
spanning a wide variety of shapes (e.g., 8 forks, 5 cannons, 6 hearts, 17 plates of food, etc.).
Thus, the database stresses the discrimination power of our shape matching algorithms
while testing them under a variety of conditions.

For the purpose of comparison to related approaches, we implemented five competing
shape matching algorithms:

—Random: this method ranks all models in random order. It provides a baseline for
evaluation of the other methods.

—Moments: this method characterizes the moments of inertia for pdintg, ) on the
surfaceS of an object(my, = fs 2Pyiz" dx dydz). The first two moments (center
of mass and principal axes) were used to register the models in a common coordinate
system, and then the moments up to a sixth order were compared using a component-
by-component., difference (up to sixth order moments were chosen because they pro-
duce the best results for the test database). Our implementation follows the description
in [Elad et al. 2001].

—Extended Gaussian Images (EGI)this method characterizes a 3D model in terms of
its distribution of surface normal vectors [Horn 1984]. We aligned the EGI for each
model based on its principal axes, and we compared two aligned EGIs by computing
their Lo, difference.

—Shape Histograms:this method characterizes the area of intersection with a collection
of concentric spheres. The distribution of areas is nhormalized so that the overall volume
is 1 and two distributions are compared by computing theidifference (as in [Ankerst
etal. 1999]).

—D2 Shape Distributions (D2): this method represents the shape of a 3D model by the
distribution of Euclidean distances between pairs of points on its surface. The distribu-
tion for every model is normalized for scale by dividing by its mean, and two distribu-
tions are compared by computing théiy difference (as in [Osada et al. 2001]).

Figure 13(a) shows retrieval results obtained with our spherical harmonics shape match-
ing algorithm as compared to the other methods. Each curve plots precision versus recall
averaged over all classified models in the database. The plot axes can be interpreted as
follows. For each target model in claésand any numbefs of top matches, “recall”
represents the ratio of models in claSgeturned within the tog< matches, while “Pre-
cision” indicates the ratio of the tof’ matches that are members of cl&ss A perfect
retrieval result would produce a horizontal line along the top of the plot, indicating that all
the models within the target object’s class are returned as the top hits. Otherwise, plots that
appear shifted up and to the right generally indicate superior retrieval results.

Note that for every recall value, spherical harmonics (black curve) gives better precision
than the competing methods. On average, the precision values are 46% higher than D2,
60% higher than Shape Histograms, 126% higher than EGls, and 245% higher than mo-
ments. The reasons are two-fold. First, matching based on moments and EGls relies upon
principal components to align models into a canonical coordinate system, and thus those
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Fig. 13. Plots of precision versus recall of our spherical harmonics descriptor versus other shape
matching methods.

methods tend to do poorly for classes of objects where the principal axes are not consistent.
In contrast, our spherical harmonics descriptor is rotationally invariant, and thus it is less
sensitive to such deviations within a class.

Second, the other shape descriptors blend shape information from different parts of an
object, and thus they seem to have trouble discriminating fine details of objects. For in-
stance, one can view Shape Histograms as an implementation of our spherical harmonics
method where only the zero-th order frequency is used. Our method describes objects up to
rotations of multiple independent frequency components, and thus it achieves a nice com-
bination of rotational invariancand discriminating power. As an example, Figure 13(b)
shows retrieval results averaged over 25 queries with living room chairs. Although there
are hundreds of other types of chairs and sofas in the database (e.g., 153 dining room
chairs), our method is largely able to discriminate the different types and achieve high
precision even in this difficult case.

Our spherical harmonics method also can be indexed effectively. Figure 14 shows the
average time (in seconds) required to find the 16 closest matches in databases of increasing
size. Note that the search time grows sublinearly, and the total search time for a database
of 17,500 models is less than 0.25 seconds.

9.2 Sketch Interface Results

In our second experiment, we investigated how well our system produces matches for
queries entered by humans. Our hypothesis is that shapes are useful in conjunction with
text for finding specific objects. To test this hypothesis, we ran an experiment where we
compared the ease of input and descriptive power of text and 2D sketches provided by
untrained users.

The subjects in this experiment were 43 students in an introductory computer science
class (not for computer science majors). Each subject was given a pen and sheet of paper
and told that their task was to write text and draw sketches that could be used by a search
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Fig. 14. Search times (in seconds) for spherical harmonics with/without indexing.

engine to retrieve “target objects” from a database of household objects. After the process
was demonstrated once by the professor, the subjects performed the test for five target
objects from the Viewpoint database (described in the previous section). For each test, the
target object was shown rotating around on a projection screen at the front of a classroom.
After fifteen seconds (three rotations), it disappeared, and the subjects were asked to write
up to five text keywords and to draw three 2D sketches from front, side, and top views that
distinguish it from other household objects. They were given two minutes for each target
object, and no feedback was given after each object. After the experiment was completed,
the students were asked to rate text and sketch queries based on “how easy” they were to
construct and “how descriptive” they were for specifying the target objects (Table 1).

Query Interface|| How Easy | How Discriminating
Text Keywords 8.0 6.2
2D Sketches 5.1 6.4

Table I.Average student ratings of text and 2D sketch query interfaces on a scale from 1 to 10 (10 is
best).

Later, we scanned their sketches and logged their keywords so that we could enter them
as input to our search engine (example sketches for a chair and an elf are shown in Fig-
ure 15). Table Il lists results achieved with queries using: 1) only their text keywords, 2)
only their 2D sketches, and 3) both text keywords and 2D sketches combined in a multi-
modal query. For each query type, the table lists the median ranks of the target object and
the percentage of the queries where the target object appeared among the top 16 matches.
The latter statistic reflects how often the target would appear on the first page in our search
engine.

The results in Table Il suggest that text and shape can be complementary in the infor-
mation they provide a search engine. For example, for the chair, text keywords were not
discriminating enough to differentiate it from the hundreds of other chairs and related fur-
niture in the database, and yet very simple sketches were able to describe it fairly precisely.
On the other hand, simple text keywords picked out the five cannons and four bunk beds,
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Fig. 15. Sketches drawn by students to retrieve a specific chair (top three rows) and an elf (bottom
three rows) during an in-class experiment.

Target Median Rank (out of 1890) % in Top 16

Object Only | Only Both Only Only Both

Name Text | Sketch | Combined Text Sketch | Combined

Chair 216 17 28 0.0% | 46.2% 25.6%

Elf 10 12 2 89.7% | 53.8% 97.4%

Table 100 571 252 5.1% 5.1% 10.3%
Cannon 7 40 2 82.1% | 33.3% 89.7%
Bunkbed 3 64 2 89.7% | 20.5% 89.7%

Table Il. Comparison of retrieval results with queries comprising only text, only 2D sketches, and
both combined.

while the 2D sketches were not as discriminating. Generally speaking, the text was effec-
tive at identifying classes of objects, while the sketches were helpful at selecting the best
matches from within a class. The net result was that the combination of sketches and text
usually produced a better match than either one alone.

9.3 Interactive Search Results

In our third experiment, we investigated how shape combines with text in interactive
searches. While the results of the previous section suggest shape helps in a single query, a
different question is whether it is still useful when users are allowed to iterate.

To study this question, we created two visually identical test versions of our web site,
both comprising: (1) a box for typing text keywords, (2) buttons for viewing the next
and previous page of match results, and (3) buttons labeled “Find Similar Object” under
the thumbnails returned from previous queries. The only difference between the two web
sites was in the way that searches could be iteratively refined. For one web site, clicking
the “Find Similar Object” button retrieved models with the most simdhapes(as in
Section 4). For the other, it retrieved models with the most sindéar documentgas in
Section 6). Our sketching interfaces were disabled during these experiments in order to
isolate the effect of shape similarity to a single query modality.
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We conducted an on-line experiment with 18 students from another introductory com-
puter science class. Each student was asked to visit a URL, which was redirected to one of
our two test web sites at random. He was led through a short tutorial that described how to
use the search engine and then presented with the task of finding fifteen target objects (the
same five listed in the previous section plus ten others selected randomly).

For each search, the target object was shown rotating on the web page for fifteen seconds
(three rotations), after which it disappeared. Then, the student entered text keywords to
initiate a search, and then iterated by either re-entering text, paging down/up, or finding
similar objects until the target object was visible among the 16 matches on the results
page.

Statistics logged during the students’ sessions appear in Table Ill. Columns 2 and 3
list the average time (in seconds) and number of iterations required for the student to find
each target object. Column 4 indicates the percentage of students that found the target on
the initial query. The last column indicates the percentage that had found it by the tenth
iteration, at which time they were instructed to give up.

Similarity | Search|| Number of | Found on Found after

Measure | Time Iterations | 1st Query || <10 lterations
Text 48 2.8 60% 7%

3D Shape| 40 2.4 54% 89%

Table lll. Results of study with different iteration methods.

These results suggest that refining searches based on 3D shape similarity is useful in
conjunction with text for finding specific objects. Using the web site equipped only with
text matching, the students were able to find the target object within ten iterations only
77% of the time. In contrast, when the students were able to iterate by finding similar
shapes, they found the target object more often (89% versus 77%), in fewer iterations
(2.4 versus 2.8), and in less time (40 sec. versus 48 sec.). Moreover, we conjecture that
students using shape-based iteration learned that they still could find objects quickly if they
entered less descriptive keywords in their initial queries (iteration accounted for 35% of the
objects found —i.e., 89% - 54%). Although this experiment was not a controlled study (the
students performed the tests over the Internet using any computer on campus), the results
are consistent with our expectation that shape can help discriminate specific objects more
effectively than text alone.

9.4 Search Engine Results

Our 3D search engine has been publicly available on the Web since early November, 2001.
It currently indexes 20,707 models. In this section, we report experiences about how people
use the site.

Table IV lists statistics gathered during one recent week of usage. During that period, the
site processed 4,522 queries entered from 1,346 unique hosts (not counting local queries)
in 55 different countries, and served 1,029 models to end users. The first row shows the
number of queries for each type. After search results have been displayed, a user can
(1) request more information about a downloaded model, (2) go to its referring page, or
(3) download the actual model. The remaining rows in Table IV shows the percentage of
searches for which these events happened at least once.
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Text | Sketch | Text& | Similar | Upload
Only Only Sketch | Shape | Model
Queries 3122 187 332 826 7
Get more info 32% | 29% 29 % 36 % 14 %
Visit ref page 8% 7% 6 % 9% 0
Download model || 14 % 8% 11 % 18 % 0

Table IV. Statistics gathered from one week’s usage of our on-line search engine.

While it is difficult to make conclusions from these statistics, we observe that people are

willing to make shape-based queries. It will be interesting to see how the usage patterns
change as our site grows.

10. CONCLUSION

In summary, this paper investigates issues in building a search engine for 3D models. The
main research contributions are: (1) new query interfaces that integrate text, 2D sketches,
3D sketches, and 3D models, (2) a new shape descriptor based on spherical harmonics
that is both discriminating and robust, and (3) results of experiments suggesting shape is
useful in conjunction with text during search for 3D models. Finally, we provide a large
repository of 3D models ... and a way to find the interesting ones.

11. FUTURE WORK

This paper has just scratched the surface of research on shape-based retrieval and analysis

for computer graphics. The following are just a few of the many topics that deserve further
investigation:

—Better 2D image matching methods:our 2D sketching interface would be more ef-
fective with better image matching algorithms. Sometimes users create query sketches
with interior texture and/or details (e.g., eyes and mouth of a human face), and our
search engine matches them with projected images containing only boundary outlines
(e.g., just the outline of the face). For matching purposes, the interior details in sketches
are “interpreted” as boundaries of holes in projected images, and unexpected results are
sometimes returned to the user. Of course, this problem could be rectified somewhat by
providing users with instructions or examples about how to draw their sketches. How-
ever, determining how best to present the instructions and providing image matching
methods that minimize user guidance are topics for future study.

—New query interfaces: it will be interesting to consider other methods for specifying
shape-based queries. For instance, the following constraint-based description might be
used to retrieve 3D models of a chair: “give me objects consisting of a box-shaped seat
with four equal length and nearly cylindrical legs attached to the bottom side of each cor-
ner and a box-shaped back above the seat with width matching that of the seat, etc.” This
approach captures parameterized classes of objects with a compact description [Debevec
et al. 1996; Witkin et al. 1987].

—New matching and indexing algorithms: follow-up work should consider other types
of shape matching problems. For instance, we currently compare whole objects, but
it would be interesting to match partial objects as well. They could be used to find a
car within a city scene or to find a Mercedes by looking for its hood ornament. Other
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matching algorithms might consider attributes of 3D models, including color, texture,
structure, and animations.

—New modeling tools: future 3D modeling systems should consider integrating shape-
based matching and retrieval methods into interactive sketching tools. For instance,
consider a 3D model synthesis paradigm in which a user draws a rough sketch of a
desired 3D model and the system *fills in the details” semi-automatically by suggest-
ing matching detailed parts retrieved from a large database. In such a paradigm, the
user could retain much of the creative control over model synthesis, while the system
performs most of the tedious tasks required for providing model detail.

—New applications: it would be interesting to see whether the shape-based query and
indexing methods described in this paper can be used for other applications, such as in
mechanical CAD, medicine, and molecular biology.

In the near future, we expect that shape-based retrieval and analysis of 3D models will
become a very important research area in computer graphics. This paper makes a small
step in that direction.
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