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ABSTRACT

Physiologically inspired feature extraction for audio classi-

fication often uses simplified parametric models of auditory

processing. We employ linear and nonlinear neuron models

directly derived from neural responses in zebra finches as fea-

ture extraction front-ends. The most important features were

identified using automatic feature selection techniques. This

allows both a quantitative evaluation of neural features for

sound classification tasks in terms of classification accuracy

and a qualitative analysis of the auditory features that are most

relevant. It turned out that a relatively small subpopulation of

neural responses is sufficient to achieve reasonable classifica-

tion performance. For linear as well as for nonlinear neuron

models, we found three different shapes of spectro-temporal

features to be archetypical. The relation of these to analytic

approaches (such as Gabor filters) is discussed. The overall

classification rates in a 6-class task reached up to 94% ac-

curacy. Nonlinear models provided up to 15% benefit over

linear models, indicating the importance of nonlinearities in

classification with physiologically motivated features.

Index Terms— audio classification, biological systems,

physiologically motivated feature extraction

1. INTRODUCTION

Humans reliably identify many different classes of acoustic

objects, despite considerable natural variability within each

class and even in noisy and reverberant environments, factors

that limit the performance of even the best classification algo-

rithm. For this reason, science has been turning its attention

towards biological systems, trying to mimic their processing

in order to reach an equally high level of performance in iden-

tification of virtually any type of sensory stimulus. The most

popular candidates of such physiologically motivated feature

extractors in the auditory system are spectro-temporal filter

approaches such as Gabor filters [1]. Simpler models only in-

clude temporal modulations (such as RASTA or Traps filters

or amplitude modulation spectrograms [2, 3]) or only spectral

modulations (such as mel-frequency cepstral coefficients).

+These authors contributed equally to this work.

These approaches have successfully been used in automatic

speech recognition (ASR), non-speech audio classification

and other fields.

In this paper, we propose to use features directly derived

from neural recordings from auditory areas. Neuron mod-

els based on the spectro-temporal receptive field (STRF) are

used as feature extraction front-ends by implementing them

as spectro-temporal filters. The parameters of the models

are estimated using neural recordings from different auditory

areas of zebra finches. Zebra finches are highly sensitive

to natural sounds with spectro-temporal properties similar

to human speech rendering them as suitable candidates to

study auditory feature extraction [4]. We expect to obtain

neural spectro-temporal representations that are comparable

to those in humans. In addition to the linear estimate, we also

implement more realistic nonlinear models in the form of a

linear-nonlinear cascade. Approaches based on linear STRFs

have previously been applied to ASR [5] and segmentation

problems [6].

The features for object classification tasks are generated by

predicting neural responses to acoustic stimuli using the

obtained neural models. Feature selection is employed to

identify the most salient STRFs for classification of a small

set of everyday sounds. Modulation analysis and clustering

in modulation space are used to identify clusters of STRFs

that are similar in their shape and function.

2. FEATURES

We used predicted neural response rates as features for audio

classification. The predictions are done by running the au-

dio data through neuron models (Sec. 2.1), which have been

trained using single-unit recordings from multiple auditory

areas in male zebra finches for conspecific vocalizations1 as

described in [7].

2.1. Neural Model

We employed the Linear-Nonlinear Poisson (LNP) cascade

([8], see Figure 1) as a model for neural reponses. It consists

1freely available at http://crcns.org/
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Fig. 1. The Linear-Nonlinear Poisson cascade model. (a) Lin-

ear features, (b) nonlinear features and (c) spikes created us-

ing a Poisson process implicitly assumed for STRF estima-

tion.

of a linear filter stage (STRF), followed by a static nonlin-

earity and a Poisson spike generation process. The STRF of

a neuron acts as a matched filter and describes the acoustic

pattern that elicits maximum response. The subsequent static

memoryless function accounts for response nonlinearities and

transforms the output of the linear stage into the instantaneous

spike rate. For STRF estimation, a probabilistic model using

an inhomogeneous Poisson process is assumed after the non-

linear stage. The Poisson assumption of independent spikes is

a good approximation as long as the refractory period of the

neuron is smaller than the temporal resolution of the neuron

model (here: 2 ms). After training the LNP models with neu-

ral recordings, features can be extracted from audio data using

the linear or nonlinear branch of the models (see Figure 1 (a)

and (b)).

2.2. STRF estimation

A well-known approach to estimate the STRF is reverse cor-

relation between stimulus and response [8]. If the stimu-

lus contains correlations across time or frequency the reverse

correlation function Qsr can be decorrelated using the auto-

correlation matrix Qss of the stimulus yielding [7]

h = Q−1
ss Qsr. (1)

Qsr and Qss are estimated as XXT and Xy, respectively,

and h is the resulting estimate of the STRF of that specific

neuron. X is the matrix that contains the stimulus vectors

as columns and y is a vector containing the corresponding

response values. Without loss of generality, X and y are

assumed to have zero mean. To avoid overfitting along the

undersampled stimulus dimensions a regularization scheme

based on Principal Component Analysis (PCA) was used.

As described in [8], the nonlinear function was estimated by

dividing the output values of the model into N = 50 bins and

mapping each bin to the mean value of the actual responses

elicited by the corresponding stimulus examples. The non-

linearities were smoothed with a 5-point Gaussian window.

Typical nonlinearities fitted this way often show tanh-like

(compressive) or quadratic (expansive) shapes.

2.3. Feature calculation

Of all available stimulus-response sets (199) we used those

STRFs that produced a mean coherence between predicted

and recorded spike rate greater than 0.25 resulting in 94

STRFs. The stimuli used in recording of the neural data

contain most of their energy above 1 kHz. Consequently, the

STRFs do not reflect any response patterns below 1 kHz. To

cover low frequencies, too, we generated further STRFs by

shifting the estimated STRFs by 5 channels (on a Bark scale)

towards lower frequencies. The resulting 188 neuron models

were used to compute auditory features as follows: the spec-

trogram of the audio input was correlated with each STRF to

obtain the linear feature set. The nonlinear feature set was

obtained by applying the corresponding static nonlinearity

(cf. Figure 1 (b)) to the output of the linear stage.

3. FEATURE SELECTION

To identify the most important STRFs, we used sequential

forward search (SFS) with 5-fold cross-validation accuracy

as cost function. SFS finds the single feature that provides

best accuracy in the cross-validation task, keeps that one, and

iteratively adds more features until the whole feature space is

used up. For speed and simplicity, we used Naive Bayes clas-

sifiers in the process. The 188-dimensional feature space was

processed in its entirety, resulting in a list of feature channels

ordered by the importance of the corresponding neuron mod-

els. This is different to [5], where mutual information-based

FS on linear STRF features was used to optimize phoneme

recognition in ASR.

4. CLASSIFICATION

Six classes of everyday sounds were used: speech (from

the TIMIT database), telephone, coffee grinder, electrical

toothbrush, water tap, and glass clinks (all from in-house

recordings). Approximately 10 min of data per class was

used for training, and 5 min for testing.

Three different classifiers were used in this work: Naive

Bayes (NB), Gaussian Mixture Models (GMM), and Support

Vector Machines (SVM). NB classifiers assume a Gaus-

sian distribution of the data and conditional independence of

all feature dimensions (i.e., a diagonal covariance matrix).

GMMs fit a set of Gaussian distributions to the data. In

pilot experiments, we obtained the best results with diago-

nal covariance matrices and 10 components in each model.

SVMs were trained using radial basis functions as kernels

(“Gaussian” kernels).

5. RESULTS AND DISCUSSION

Figure 2 shows the classification accuracy of all three classi-

fiers over the number of features included. Using only one
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Fig. 2. Classification accuracy of all three classifiers over

the number of features used. Dark lines show performance

on linear features, light lines show performance on nonlinear

features.

feature already results in 40–50% accuracy (chance level for

6 classes is 1/6 ≈ 16.7%). Performance increases with in-

creasing number of features for all classifiers; however, NBs

reach a peak with about 30 features at just below 70% accu-

racy, GMMs saturate after 15–20 features at about 80% accu-

racy. Only SVMs gain performance beyond 30 features. Ex-

periments with linear-kernel SVMs showed rather poor per-

formance (not shown).

Feature selection was carried out using NB classifiers (and

not individually for each classifier) due to computational cost.

Since SVMs are discriminative classifiers, the features se-

lected with NB classifiers are obviously better suited to NB

and the similar GMM models than SVMs, which explains

that SVMs start at a lower performance than GMMs. We ex-

pect that using SVM-based feature selection would shift the

SVM curves towards earlier convergence at the same value

(≈ 94%).

It turns out that a set of 15-20 neurons selected using FS is

sufficient to attain good performance even with comparatively

simple classifiers. This is significantly less than the 65 × 6
optimal STRFs found in ASR [5], which on the other hand

contains more classes. NB and GMM seem to cope better

with linear features than nonlinear ones, quite the opposite to

SVMs. The nonlinear stage changes the distribution of the

data to higher or lower kurtosis (corresponding to expansive

and compressive nonlinearities, respectively), possibly vio-

lating the Gaussian assumption of the NB and, to a lesser

extent, the GMM. Since the estimated nonlinearity maps the

linear filter output onto a recorded spike rate which only as-

sumes positive values, it has the additional effect of half-

wave rectification. The resulting distribution of the features is

highly asymmetric with a steep cut-off at zero, which is hard

Fig. 3. Classification performance of the 6 best selected fil-

ters. Legend identical to Figure 2. Dark lines correspond to

linear features, light grey lines to nonlinear features. The se-

lected filters are plotted above (linear feature set) and below

(nonlinear) the graph. Note that the pool of possible filters

was identical for linear and nonlinear features, but different

ones were chosen as salient in the feature selection process.

to model with Gaussians. Correlation analysis of the STRFs

revealed that the primarily selected filters are less correlated

than those added later. Therefore the independence assump-

tion of the NB is only met for the first few FS steps, which ex-

plains the low or even negative contribution of the later filters.

Figure 3 is a zoom on Figure 2, showing the first 6 selected

features and their actual filter shapes. It can be seen that both

linear (top row) and nonlinear (bottom row) feature extraction

cause similar types of filters to be selected: frequency-specific

narrow-band filters, narrow- and broad-band onset detectors

and temporal modulation filters, as well as sporadic more

complex spectro-temporal patterns. Additionally, the down-

shifted STRFs are often selected, which is likely caused by

the low-frequency content of some of the classes (the coffee

grinder, for example).

Figure 4 shows the space of temporal and frequency mod-

ulations covered by the STRFs. Each STRF is plotted as a

dot at the position of its maximal modulation, i.e. the peak

of the magnitude of the 2D Fourier transform of the time-

frequency filter. Cluster analysis revealed the occurance of

typical shapes: fitting a GMM to the distribution of the data in
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Fig. 4. Clustering of the STRF filters in modulation space.

One blue dot for each STRF, orange dots refer to the first 20

STRFs as obtained in the linear feature selection task. Al-

most all of the 188 filters can be attributed to one of three

major clusters whose centers are indicated by the green tri-

angles. Exemplary STRFs located most closely to the center

of these clusters are shown above the figure. They exhibit

spectral (left), spectro-temporal (center) and temporal (right)

modulations.

modulation space results in three distinct clusters. Each Gaus-

sian (green triangles labelled ‘center’) corresponds roughly to

one of the three dominant shapes, a typical example of which

is plotted above the cluster plot. We also experimented with

higher numbers of clusters, which led to several of those to be

lumped together to effectively form three clusters again.

6. CONCLUSION

We demonstrated that spectro-temporal neural filters can be

used to extract features from audio data with promising suc-

cess in classification tasks. The employed nonlinearities in

the neural models can improve performance significantly.

Feature selection and clustering analysis showed that a small

number of distinct typical shapes (purely temporal, purely

spectral, diagonal, and more complex filters) are most rele-

vant to distinguish everyday sounds. Some of these shapes

are similar to parametric approaches such as Gabor filters, but

others would not be captured by a comparatively simple filter

bank. The nonlinearity of the model proved beneficial when

classification rates reached competitive levels, indicating that

in order to successfully learn from auditory processing, the

apparent nonlinearities should not be neglected.
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