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ABSTRACT

Incoherent triplet-triplet energy transfer through the benzophenone-fluorene-naphthalene

system is computationally investigated to determine triplet hopping rates. These rates have

been previously measured experimentally and have also been estimated computationally.

There are many complex steps associated with such a computational analysis, though, and

earlier efforts resorted to a variety of semi-empirical modifications to the methods used in

order to obtain results consistent with the experimental data. This has motivated an inves-

tigation in which best practice methods are applied to the system without any empirical ad-

justments. The calculation of triplet excitation energy and triplet-triplet electronic coupling

are examined in detail using a range of computational methods from simple Density Func-

tional Theory to the many-body Green function approach embodied in the Bethe-Salpeter

Equation. This analysis includes an evaluation of the robustness of each method consid-

ered. Significantly, the investigation identifies the excited states of benzophenone as being

extremely difficult to calculate using even the most advanced excitation methods, and a the-

ory is presented as to why the molecule is both interesting and troublesome. The final rate

estimates, without any empirical adjustments, are one to two orders of magnitude greater

than those measured experimentally. This data, and the detailed methodological study sup-

porting it, is expected to be helpful in future efforts to computationally scrutinize triplet

exciton hopping.
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CHAPTER 1

INTRODUCTION

Triplet-triplet exciton transport (TTET) is an important mechanism in many fields of

research. Unlike singlet excitations, triplets do not quickly decay back into the ground state,

as this transition is spin-forbidden. This affords triplets an extremely long lifetime relative to

singlet excitations, making them very useful in energy transport applications. TTET has also

been shown to play a key role in biological and chemical processes, such as photosynthesis

and photosensitization [1]. Attempts are being made to harness the usefulness of triplets

found in nature, and apply them to technologies such as photovoltaics and organic electronics

[2]. In order to design and study these technologies, we must first understand TTET from a

theoretical perspective; this is still an open area of research.

This thesis examines best practice computational approaches for studying incoherent

TTET through the benzophenone-fluorene-naphthalene system. Although there is now a

large body of experimental research measuring TTET rates [3], the computational and theo-

retical methods used to study this process are not well established because such rate estimates

call for a number of sophisticated calculations of excited state molecular assemblies that tend

to be extremely sensitive to environmental and geometric uncertainty. These investigations

typically include a variety of semi-empirical corrections intended to bring computational

results more in line with experimental measurements. Frustratingly, such corrections are

often unexplained or weakly supported, making them suspect if only because they result in

predictions that match experimental data extremely well.

One difficulty of TTET calculations is the electronic coupling. Coupling interactions used

in singlet energy transport, such as Förster resonant energy transport, rely on the Coulomb

interaction; however this interaction is spin-forbidden for TTET, so other coupling methods

must be used. There have been multiple new TTET coupling methods proposed recently,
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such as Hartree-Fock (HF) coupling [4] and the fragment-spin-difference (FSD) method [5],

which are studied in this thesis. Yet there has been no study of the accuracy or robustness of

these methods, making them unreliable for use in predictive analyses. This thesis endeavors

to study and compare the HF and FSD coupling methods, and to discuss how and to what

extent they can be used to predict TTET rates.

Another difficulty of TTET is the calculation of triplet excitation energies, which de-

termine the driving force ∆G of the hopping process. Time-dependent density functional

theory (TDDFT) and more recently the Bethe-Salpeter equations (BSE) have been used

to successfully improve the calculation of excitation energies [6, 7]. Yet these sophisticated

methods have not yet been proven to be reliable; TDDFT excitation energies can differ from

experimental values by up to 1 eV [8], and the BSE method still requires extensive testing.

A third difficulty in producing computational results that can be compared with exper-

imental data is that rate calculations are very sensitive to the excitation energies involved

in hopping. This makes it extremely important to estimate these energies accurately. In

Fermi’s golden rule (FGR) [9], the hopping rate is directly proportional to the density of

states (DOS). Most DOSs are a Gaussian or Lorentzian function of the driving force, making

them extremely sensitive to excitation energies. To help explain this idea, Figure 1.1 shows

an example Franck-Condon Weighted DOS used in the calculations detailed later in this

thesis, plotted by the driving force. Even a 0.5 eV difference in driving force can change the

TTET rate by a factor of five.

Another unresolved issue in TTET calculations is the choice of geometry. Some studies

use ground-state optimized geometries [10], and others triplet-state optimized geometries

[11], neither with any justification for their choice. The electronic coupling and excitation

energies depend strongly on the geometry used, making them very important for accurate

TTET calculations. With current computational methods it is very difficult to optimize

triplet-state geometries accurately, and triplet excitation calculations are very sensitive to

these geometries.
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Figure 1.1: FCWD for the Bp→ F Transition

This thesis will discuss many of the methods and calculations involved in predicting

TTET rates, and their accuracy and sources of error. The discussion sections will suggest

improvements to the methods used in literature, which aim to best predict accurate TTET

rates while minimizing empirical influence.

1.1 The Bp-F-Nap Molecule

This thesis investigates TTET on the benzophenone-fluorene-naphthalene molecule (Bp-

F-Nap), shown in Figure 1.2. The Bp-F-Nap molecule is uniquely capable of TTET for

two reasons: 1) on Bp, the donor molecule, nearly all excitations quickly transition into the

lowest triplet state via intersystem crossing [3], and 2) there is a “downhill” energy gradient

along donor→bridge→acceptor [10]. Reason 2 simply indicates that the exciton will likely

move along the path donor→bridge→acceptor. Reason 1 ensures that the donor will only

produce triplet states, which is a very peculiar quality of Bp.

The Bp molecule has been an object of curiosity for the better part of this century. Of

particular interest is the lowest triplet state of Bp, which has been the subject of numerous

3



experimental studies [12–14]. Optical excitations in Bp quickly decay (within picoseconds)

into the lowest triplet state, which is relatively stable. This rapid intersystem crossing is

very useful for generating triplet excitons, but its cause is not very well understood. The

physical effects that give rise to the strange behavior of Bp have also caused problems in

electronic calculations of this molecule, as discussed in Section 3.2.

The rapid intersystem crossing of Bp has been studied extensively, yet it is not completely

understood. This strange property, while useful for triplet generation, is likely the cause of

many problems encountered by excited-state calculations.

The following sections discuss one experimental and one computational study of TTET

rates on the Bp-F-Nap molecule, which are used comparison throughout this thesis.

Figure 1.2: The Bp-F-Nap molecule

1.2 Experimental Benchmark

The Bp-F-Nap system was studied experimentally by Vura-Weis et al. in [10]. Both

sequential hopping and superexchange (or tunneling) rates were measured, using transient

absorption spectra. These experimental hopping rates will be compared to the computational

results presented in this thesis; this experimental study is just one example of many such

4



measurements of TTET rates available for comparison with computational models.

1.3 Computational Benchmark

Si et al. published a computational study of TTET on Bp-F-Nap, using a diabatic-state

approach [11]. Their rates were slightly higher than those measured by Vura-Weis et al., but

still very close for an ab initio study. However, the methods used by Si et al. required some

empirical knowledge of the system, and some unexplained approximations, making them

difficult to use in predictive studies. The rates calculated in [11] will be compared to the

results presented in this thesis, and suggestions will be made to improve these calculations.

Specifically, the approximations made in [11] will be discussed, and suggestions will be

proposed to make such calculations less empirical.

One important result presented by Si et al. is the comparison of superexchange to

sequential hopping. They find that superexchange coupling between the Bp donor and the

Nap acceptor is two orders of magnitude smaller than their direct electronic coupling, making

the superexchange process much slower than the sequential hopping process. For this reason,

superexchange rates are not calculated in this thesis.

Chapter 2 will discuss the proposed expression for the TTET rate, and the many physical

parameters which constitute it. Calculations of these physical parameters are presented and

discussed in Chapters 3, 4, and 5. The final rate calculations are discussed in Chapter 6.
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CHAPTER 2

THEORY

This thesis seeks to elucidate the computational methodology associated with the cal-

culation of TTET rates between small organic molecules. Experiments indicate that this

type of hopping occurs in the incoherent regime [15]; this is confirmed by the comparison

of reorganization and electronic coupling energies in Chapters 3 and 4. In the incoherent

regime, we can use Fermi’s Golden Rule (FGR)[9] for the transport rate:

ki→f =
2π

h̄
| Vif |2 ρ , (2.1)

where Vif = 〈f | W | i〉 is the perturbation term due to W between the initial (| i〉) and final

(| f〉) states, and ρ is the density of states. The FGR is based on a first-order perturbation of

the system Hamiltonian to calculate the projection of | i〉 onto | f〉. These states account for

both electronic and phonon states. However because these transitions occur in the incoherent

regime, we can make the Condon approximation [9], that the electronic interaction does not

depend on the initial and finial vibrational states of the system:

〈φf ;χf | W | φi;χi〉 = 〈φf | W | φi〉 × 〈χf | χi〉 , (2.2)

where | φ〉 is an electronic state, and | χ〉 is a vibrational state. This approximation also

implies that the electronic states are adiabatic – that is, the electronic orbitals are inde-

pendent of the vibrational coordinates. This is an important distinction; expressions for

the parameters ρ and Vif – which determine the rate in equation 2.1 – depend on whether

adiabatic or diabatic states are used. The difference between these states is discussed in the

following section.

2.1 Diabatic and Adiabatic States

We seek to calculate the rate at which an exciton hops from one moiety to another, but

the initial and final states associated with such an event are difficult to ascertain. They are

6



necessarily not associated with global equilibrium states of the system but, rather, with local

equilibria. Excitons can tunnel out of these states with or without vibrational assistance,

and it is such rates that we are trying to quantify.

The difference between the global and local equilibria can be described in terms of adi-

abatic and diabatic processes, respectively. In a diabatic process, electrons react to local

dynamics of the nuclei, while electrons have time to react to the global nuclei environment

in adiabatic processes. From a thermodynamics perspective, an adiabatic process is one in

which there is no transfer of heat. On the molecular scale, this corresponds to a process

which does not involve energy transferred to or from the phonon states of the system. Thus,

an adiabatic process assumes that the nuclei can be treated as static, and that the electrons

react very quickly to nuclear displacements so that the electronic structure is always an

eigenstate that parametrically depends on atomic positions. On the other hand, diabatic

processes assume that the nuclei and electron dynamics proceed at comparable rates, and

their dynamic interactions must be considered. It is often helpful to ask if a given system is

in an electronic eigenstate for the prescribed atomic positions. If so, it is an adiabatic state.

This distinction can also be understood through the Born-Oppenheimer approximation

[16] in which the electronic and vibrational components of a wave function are assumed to

be separable. This amounts to an adiabatic assumption. For further illustration, Figure 2.1

shows potential energy surfaces (PESs) for diabatic and adiabatic states, and how they relate

to the hopping parameters in Equation 2.1; these parameters are discussed in the following

sections.

Bringing these concepts home to the TTET investigation, an electronic structure calcu-

lation on the entire Bp-F-Nap assembly will yield adiabatic states that are not relevant in

hopping dynamics because the initial and final states associated with an exciton hop are

necessarily electronic states that are out of equilibrium relative to the atomic positions–i.e.

they are not eigenstates. This is a computationally difficult position to be in, but there

are several approaches that are used to estimate the (diabatic) initial and final states. One

7



approach is to simply obtain the (adiabatic) eigenstates of each moiety separately. Initial

and final excitonic states can then be constructed out of these isolated eigenstates, and such

composite states are treated as diabatic states for the entire assembly – i.e. as local equi-

librium states. Another approach is to try to confine constrained excitonic orbitals to one

moiety or another, again to approximate local equilibria. These methods are discussed in

detail subsequently.
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Figure 2.1: Diabatic and adiabatic PESs; λ is the reorganization energy, V is the electronic
coupling, and ∆G is the driving force

Notation: For simplicity, we will use superscripts to indicate the presence of a triplet state,

and the notation (geometry||occupation) to describe the geometry and electronic occupation

used. For example:

Diabatic States
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� (D3−A||D−A): The donor-acceptor dimer; optimized with a triplet on the donor; in

the ground electronic state.

� (D−B−A||D−B3−A): The donor-bridge-acceptor molecule; optimized in the ground

electronic state; with a triplet confined on the bridge.

Adiabatic States

� (A||A3): The acceptor molecule; optimized in the ground state; in the triplet electronic

state.

2.2 Density of States

The density of states ρ represents the number of available transitions from initial to final

states in equation 2.1. Because the Bp-F-Nap system is a strongly confined system its energy

levels are very discrete, so the only significant contribution to ρ that we need to consider is

exciton-phonon interaction.

Exciton-Phonon Interaction: When a molecule transitions into an excited electronic

state, its geometry relaxes as well – using the above notation, this is the transition from

(X||X3) to (X3||X3). Letting ∆ ~Q be the total change in geometry,

∆ ~Q = geom(X3)− geom(X) ,

then in the harmonic approximation, the individual contribution from each phonon mode êi

is [17]

∆ ~Qi = ∆ ~Q · êi .

Using these ∆ ~Qi we can define the mode-specific reorganization energy as

λi =
1

2
ωi∆Q

2
i , (2.3)
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where ωi is the frequency of the ith mode. We can then define the Huang-Rhys Factor [9] of

the ith mode as

Si = λi/h̄ωi . (2.4)

2.2.1 FCWD

As shown in equation 2.2, adiabatic electronic states neglect exciton-phonon interactions.

Such interactions are important for these rate calculations, even in the incoherent regime

[18]; for this reason we will incorporate exciton-phonon interactions using the Franck-Condon

weighted density of states (FCWD) [9, 17]. The exciton-phonon interaction density of states

is simply a sum of delta-functions, one for each phonon mode. These delta functions can be

expressed a time-integral of of a complex exponent, which results in the expression for the

FCWD:

ρFCWD =
1

2πh̄

∫ +∞

−∞
dt exp

{
i
∆E

h̄
t−
∑
j

Sj
[
(2nj + 1)− nje−iωjt − (nj + 1)eiωjt

]}
, (2.5)

where Sj and ωj are the Huang-Rhys factors and frequencies of the jth phonon mode, and

∆E is the change in optical gap during the process. nj is the phonon occupation number,

nj =
1

exp(h̄ωj/kBT )− 1
.

Because the FCWD uses adiabatic states, yet includes exciton-phonon interactions, it is

termed a nonadiabatic method. Lorentzian and Gaussian distributions are typically used

to account for various broadenings of ρ. Thermal broadening (due to exciton-phonon in-

teractions) and natural broadening (due to the uncertainty principle) are often Lorentzian,

while other contributions such as inhomogeneous broadening and Doppler broadening are

Gaussian [19]. As expected, the FCWD resembles a Gaussian and Lorentzian distribution,

as shown in Figure 2.2. This FCWD was generated for the Bp → F transition, and it is

plotted along with both Gaussian and Lorentzian fits.
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Figure 2.2: FCWD for the Bp → F transition (solid blue), with Gaussian (red dashes) and
Lorentzian (green dots) fits

2.3 Electronic Coupling

Coulomb interactions, which typically dominate Förster resonant energy transfer, are

not relevant in triplet-triplet energy transport because the associated orbitals involved in

Coulomb integrals have orthogonal spins. This means that the simplest estimate for elec-

tronic coupling (the calculation of Coulomb integrals) cannot be used in the present setting.

However, a related contribution to electronic coupling comes from Dexter interactions as-

sociated with triplet-triplet coupling. This can be estimated with integrals that capture

exchange interactions [20]. However recent computational studies have shown that Dex-

ter coupling is insufficient to accurately predict TTET rates [4, 5]. A more comprehensive

method is needed. Two such methods are studied in this thesis – Hartree-Fock coupling and

the fragment-spin-difference method.
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2.3.1 Hartree-Fock Coupling – Diabatic States

The biggest challenge in calculating electronic coupling is finding the correct initial and

final states to use. Voorhis and Yeganeg proposed a method of calculating these states using

constrained-DFT (CDFT) [4], which assumes that the physically correct initial and final

(diabatic) states have the triplet spin density completely confined to the donor and acceptor

molecules, respectively. CDFT is used to confine the spin density, and the spin constraints

are used to optimize the donor-acceptor dimer into the appropriate geometry.

The electronic coupling is then the off-diagonal electronic Hamiltonian term between the

initial and final diabatic states,

Vif = 〈D − A3 | Hel | D3 − A〉.

Because these states calculated within CDFT are not guaranteed to be orthogonal, the

Löwdin method is used to find orthogonal eigenstates; the off-diagonal Hamiltonian matrix

element for these orthogonalized states is then used in the FGR:

VHF =
HDA − SDA(εd − εa)/2

1− S2
DA

,

where Hif and Sif are the coupling and overlap between the donor and acceptor CDFT-

calculated diabatic states, and εd and εa are the CDFT-diabatic state energies. The Hamil-

tonian and overlap matrix elements HDA and SDA can be evaluated using the Hartree-Fock

Hamiltonian and orbitals, which is why this method is referred to as Hartree-Fock (HF)

coupling.

Because HF coupling uses CDFT-diabatic states, it requires a computational package that

can perform spin-restricted CDFT (such as Q-Chem [21]). Si et al. successfully employed

this coupling method in [11], as discussed in Section 4.
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2.4 Fragment Spin Difference – Adiabatic States

Because diabatic states are often difficult to calculate, it is easier to first find adiabatic

states, and then use a superposition of these to generate diabatic states. Such a method was

proposed by You and Hsu [5] – the fragment spin difference (FSD) method. FSD coupling

is based on the fragment charge difference method, which was developed by Voityuk and

Rösch [22] for electron transport. The FSD method is best understood by first discussing

FCD, which begins by defining two adiabatic states:

ψ1 = cD1φD + cA1φA

ψ2 = cD2φD + cA2φA ,
(2.6)

where φD and φA are diabatic orbitals localized on the donor and acceptor, respectively. An

orthogonal transformation is used on ψ1 and ψ2 to obtain two new states, ψ̃D and ψ̃A:(
ψ̃D
ψ̃A

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
ψ1

ψ2

)
. (2.7)

In the state ψ̃D, the charge on the donor is

qD(ψ̃D) = (cD1cos(θ)− cD2sin(θ))2

= q1(D)cos2(θ) + q2(D)sin2(θ)− q12(D)sin2(2θ) ,
(2.8)

and similarly for the state ψ̃A, the charge on the acceptor is

qA(ψ̃A) = (cA1cos(θ) + cA2sin(θ))2

= q1(A)cos2(θ) + q2(A)sin2(θ) + q12(A)sin2(2θ) ,
(2.9)

where the following substitutions have been made:

qij(D) = cDicDj

qij(A) = cAicAj

∆qij = qij(D)− qij(A) .

(2.10)
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In order to find the maximum charge difference between these two states, we must find

the rotation angle θ that maximizes the sum of charges on the donor and acceptor, qtot =

qA(ψ̃A) + qD(ψ̃D). This is easily done by setting dq
dθ

= 0, which yields

tan(2θ) =
2∆q12

∆q22 −∆q11
, (2.11)

By using equations 2.7 and 2.11 it is easily shown that the coupling is

V FCD
12 = 〈ψ̃D | H | ψ̃A〉

=
(E2 − E1)|∆q12|√

(∆q11 −∆q22)2 + 4∆q212
,

(2.12)

where Ei is the energy of the ith electronic state.

FSD coupling adapts this method to TTET by changing the charge difference terms ∆qij to

spin difference terms, defined as

sij(r) = ραij(r)− ρβij(r)

∆sij =

∫
r∈D

sij(r)−
∫
r∈A

sij(r) ,
(2.13)

where i and j are excited (adiabatic) states of the system; and for ρij, i = j indicates the

spin density for the ith excited state for, and i 6= j indicates the transition spin density

between the ith and jth states. The integrals in equation 2.13 are over the spatial regions

of the donor (D) and acceptor (A), which must be specified by the investigator. The FSD

coupling is then

V FSD
12 =

(E2 − E1)|∆s12|√
(∆s11 −∆s22)2 + 4∆s212

, (2.14)

where Ei is the energy of the ith excited (adiabatic) state. Similarly to the fragment charge

difference method, FSD maximizes the spin difference between the donor and acceptor ex-

citations.

The fundamental difference between HF coupling and FSD coupling is the order of op-

erations. Both methods assume that the physically correct (diabatic) initial and final states
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have the triplet spin density localized on the donor and acceptor molecules, respectively.

HF coupling achieves this end by calculating these diabatic states from the start; on the

other hand, FSD coupling first calculates adiabatic states (eigenvalues of the donor-acceptor

system), and then satisfies the spin restriction using a superposition of the adiabatic states.

2.5 Driving Force ∆G

The driving force is defined as the change in free energy during the hopping process [23]:

∆G =E(D3 − A||D − A3)− E(D − A3||D − A3)

+ Eopt(D
3 − A||D3 − A)− Eopt(D − A3||D − A3),

(2.15)

where E() indicates a total system energy, and Eopt() is the optical gap. As discussed earlier,

the initial and final states are diabatic, because they are not eigenstates of the donor-acceptor

system. The driving force can be separated into the reorganization energy λ:

λ = E(D3 − A||D − A3)− E(D − A3||D − A3) ,

and the difference in optical gap ∆E:

∆E = opt(D3 − A||D3 − A)− opt(D − A3||D − A3) .

∆E accounts for changes in the excitation energy during hopping, while λ accounts for

geometric relaxation during hopping. In this thesis we use the FCWD, which accounts for

λ by calculating exciton-phonon interactions; for this reason λ will not be used explicitly in

equation 2.1. Instead, λ will be compared to the sum of all modal reorganization energies

to check the vibrational analysis, as discussed below.

2.5.1 Reorganization Energy

Without approximation, the reorganization energy for TTET is

λdirect = E(D3 − A||D − A3)− E(D − A3||D − A3) .
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Assuming that the interaction between donor and acceptor geometries is small, we can use

adiabatic states instead of diabatic – that is, geometries optimized into the eigenstate of the

individual donor and acceptor molecules (this is sometimes called the four-point method)

[11]:

λ4−point = E(D3||D)− E(D||D) + E(A||A3)− E(A3||A3) .

λ can also be expressed through the vibronic structure, as a sum of the mode-specific reor-

ganization energies:

λvib =
∑
i

λi .

λvib is not recommended to estimate reorganization energy; rather it should be compared to

λdirect or λ4−point to check the validity of a calculated vibronic structure.

2.6 Ground State Electronic Structure Calculations

All of the physical properties above are estimated using density functional theory (DFT),

an ab initio ground state method. The core principles of DFT are the Hohenberg-Kohn

theorems, which state that for an N -electron system in an external potential1:

1. The external potential – and therefore the total system energy – is uniquely determined

by a functional of the N -electron density.

2. The minimum of this functional is the exact ground-state energy, and the corresponding

N -electron density is the exact ground-state density.

The expression for this N -electron density is based on the Kohn-Sham equation for a

system of non-interacting electrons [24]:

1As these theorems indicate, DFT is only a ground-state theory – all excited-state DFT calculations should
be used with caution.
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(
− h̄2

2m
∇2 + Veff (r)

)
φi(r) = εiφi(r) ,

where the εi are the energies of the Kohn-Sham orbitals φi. The electron density for an

N -particle system is then

ρ(r) =
N∑
i

|φi(r)|2 .

The Kohn-Sham potential Veff is [25]

Veff (r) = Vext(r) + q2e

∫
dr′

ρ(r′)

|r− r′|
+
δExc[ρ]

δρ(r)
,

where Vext is the external potential (in this case, only due to nuclei), the second term is the

electrostatic potential, and the third term is the exchange-correlation potential Vxc. These are

called the Kohn-Sham equations, which must be solved self-consistently. There is only one

term in this equation that cannot be solved for exactly – the exchange-correlation functional

Exc; the following section discusses various approximations for Exc.

2.6.1 Exchange-Correlation Functionals

For all systems (except for the electron gas), Exc is not known; for this reason we must

choose an approximation method [9].

Hartree-Fock: In the Hartree-Fock method (HF), the exchange interaction is calculated

exactly while the electron correlation is neglected. The Hartree-Fock “exact” exchange

functional is

EHF
x =

1

2

∑
i,j

∫ ∫
d3r1d

3r2 ψ
∗
i (r1)ψ∗j (r1)

1

r12
ψi(r2)ψj(r2)

HF exchange is often included in the hybrid functionals discussed below.
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Local Density Approximation: The most commonly used exchange-correlation func-

tional is the Local Density Approximation (LDA), which assumes that Exc only depends

locally on ρ:

ELDA
xc =

∫
d3r εxc(ρ(r))ρ(r) .

There are many analytic forms of εxc that may be used. Most calculations in this thesis used

an Exc proposed by Perdew and Wang [26], commonly referred to as PWC.

Generalized Gradient Approximation: An improvement to LDA is the Generalized

Gradient Approximation (GGA), which also considers the gradient of ρ:

EGGA
xc =

∫
d3r εxc(ρ(r),∆ρ(r))ρ(r) .

As for LDA, there are many GGA forms of Exc; many calculations in this thesis use a

functional proposed by Perdew, Burke , and Ernzerhof [27], commonly referred to as PBE.

Hybrid Functionals: A further correction to LDA and GGA is the hybrid functional,

which include LDA and GGA exchange correlation, as well as Hartree-Fock exchange. The

only hybrid functional used in this thesis is that proposed by Lee, Yang, and Parr [28],

commonly referred to as B3LYP.

2.6.2 Excited State Electronic Structure Calculations

Excited state calculations are more difficult and complicated than ground state calcula-

tions. There are many excited state theories, and most of them are improvements of DFT.

DFT HOMO-LUMO Gap: The most basic approximation of optical gap used is the DFT

HOMO-LUMO energy gap – that is, the difference between the highest occupied molecular

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), of a DFT calculation.

To calculate a triplet HOMO-LUMO gap, we restrict the spins of thw two highest Kohn-
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Sham orbitals to be parallel. Because DFT is strictly a ground-state theory, this is a very

rough estimation of optical gap; to improve it, we can include quasi-particle effects using the

GW approximation.

Quasi-Particle Effects and GW: Hedin proposed a correction to the excited-state DFT

energies using single-particle Greenś functions [29]. He applies a perturbation to the excited-

state DFT energies (LUMO and above), based on the screened Coulomb interaction and the

polarizability; this correction is called the GW approximation. The GW correction estimates

quasi-particle energies – that is, the energy required to add or remove an electron from the

system [7]. Figure 2.3 shows some example systems for which GW predicts the experimental

optical gap better than DFT (LDA) [30]. Quasi-particle energies correspond to the energy

required to add or remove an electron from a system – making them useful for charged

systems, but not ideal to for neutral excitations.

For this reason GW quasi-particle calculations are not reported in this thesis, although

they are just used to calculate BSE energies.

GW+BSE: While GW quasi-particle energies are useful for investigating charged systems,

they do not account for neutral excitations such as those involved in TTET. Instead the

Bethe-Salpeter equation is used, which uses two-particle (electron-hole) Greens function to

include excitonic effects [7]. It has been shown that, for confined systems and small molecules,

the BSE method can more accurately calculate excitation energies [7, 31].

TDDFT: Time-Dependent Density Functional Theory (TDDFT) uses the same theoretical

framework as DFT – Kohn-Sham orbitals – only TDDFT uses a time-dependent density

and time-dependent potential. This method is based on the Runge-Gross theorem [6] –

the time-dependent counterpart to the Hohenberg-Kohn theorem discussed in Section 2.6.

Excitations within TDDFT are calculated using all available states, not just the HOMO

and LUMO as the DFT gap does. This provides a significant improvement to optical gap
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Figure 2.3: Comparison of GW and DFT (LDA) optical gaps [30]
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calculations.

CIS: Configuration Interaction Singles (CIS) is identical to TDDFT, save for two differ-

ences 1) CIS uses the Hartree-Fock exchange instead of a DFT exchange-correlation func-

tional, and 2) CIS makes the Tamm-Dancoff approximation [32] – which only considers single

electron-hole excitations [33]. The CIS method can be extended to include single and double

excitations (CISD), triples (CISDT), and so on.
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CHAPTER 3

COMPUTATIONAL IMPLEMENTATION: OPTICAL GAP

This chapter discusses calculations of optical gap using DFT, GW+BSE, and TDDFT.

Two sets of geometries were used in these calculations. Each molecule was optimized –

Bp-me2, F-me, and Nap-me – into a ground-state geometry, and a triplet-excited state

geometry. The ground-state optimizations used spin-restricted calculations, while the triplet-

state optimizations used spin-unrestricted calculations with the total spin set to 2. Both PBE

and LDA XC-functionals were used; all optimization were done in DMol 3 [34].

DFT HOMO-LUMO Gap: All DFT HOMO-LUMO gaps were calculated using DMol.

As expected the DFT HOMO-LUMO gap calculations (see Table 3.1) are not very close to

experiment, but they did indicate a downhill driving force, suggesting that hopping from Bp

to F to Nap is possible. The choice of exchange-correlation functional also appears to have

little effect on DFT. The HOMO levels for both PBE and LDA are within 0.1 eV of each

other, while the LUMO energies are about 0.3 eV higher with LDA.

GW+BSE: All GW+BSE gaps were calculated using Parsec & RGWBS [7]. BSE calcu-

lations (see Table 3.2) were much closer to experiment than any other method, for fluorene

and naphthalene. However the BSE results for benzophenone were consistently about 0.5

eV below experimental values. Although he did not consider BSE calculation, Si et al. also

encountered a problem in estimating the optical gap of benzophenone, and this is discussed

in Section 3.2.

TDDFT: All TDDFT gaps were calculated using Q-Chem [21], and some calculations used

the SM8 [35] solvation model with H2O. TDDFT calculations are listed in Table 3.3 and

2The -me indicates that a methyl group is attached where the molecule would connect to its neighbor.
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Table 3.1: Triplet DFT HOMO-LUMO gaps (eV)

LDA PBE
molecule Ground Triplet Ground Triplet Lit.[10]

Bp-me
HOMO -6.27 -6.08 -5.93 -5.73
LUMO -3.27 -3.53 -3.15 -3.46

gap 3.00 2.55 2.78 2.27 3.11

F-me
HOMO -5.50 -5.15 -5.15 -4.78
LUMO -2.34 -2.66 -2.25 -2.61

gap 3.16 2.48 2.90 2.17 2.87

Nap-me
HOMO -5.31 -4.99 -4.96 -4.61
LUMO -2.45 -2.85 -2.40 -2.81

gap 2.86 2.14 2.56 1.80 2.60

Table 3.2: Triplet BSE energies, for geometries optimized into the LDA and PBE ground
and triplet states (eV)

LDA Geometries PBE Geometries
molecule Ground Triplet Ground Triplet Lit. [10]

Bp-me 2.43 1.81 2.36 1.69 3.11
F-me 2.74 2.02 2.66 1.91 2.87

Nap-me 2.45 1.71 2.36 1.60 2.60
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Table 3.4. Both the PBE and B3LYP XC functionals were used as noted, and all calculations

use the 6-31+G* basis functions. As discussed in Chapter 4, the 6-31+G* basis is consistent

with other long-range and numerical basis sets, so it is appropriate for use in the Bp-F-Nap

system.

While the TDDFT calculations were not as close to experiment as BSE, the Q-Chem

software allowed for the inclusion solvent effects and different functionals. As found in

the DFT and GW+BSE calculations, excitation energies calculated using triplet geometries

severely over-estimate the Stokes shift.

Table 3.3: Triplet TDDFT energies, PBE-ground-state geometry (eV)

No Solvent In H2O
molecule PBE B3LYP PBE B3LYP Lit. [10]

Bp-me 2.60 3.01 2.90 3.27 3.11
F-me 3.12 3.31 3.13 3.32 2.87

Nap-me 2.84 3.02 2.84 3.01 2.60

Table 3.4: Triplet TDDFT energies, PBE-excited-state geometry (eV)

No Solvent In H2O
molecule PBE B3LYP PBE B3LYP Lit. [10]

Bp-me 1.95 2.33 N/A N/A 3.11
F-me 2.44 2.56 2.45 2.57 2.87

Nap-me 2.13 2.24 2.13 2.24 2.60

CIS: CIS gaps were calculated using Q-Chem; these results are listed in table Table 3.5, and

they are converged in the number of single excitations used3. These calculations are by far

the closest to experimental values.

3These calculations are identical to the TDDFT calculations discussed above, only the Hartree-Fock exchange
is used instead of an exchange-correlation functional like PBE or B3LYP.
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Table 3.5: Triplet CIS energies, for geometries optimized into the PBE ground and triplet
states (eV)

molecule Ground Geometry Triplet Geometry Lit. [10]

Bp-me 3.10 2.64 3.11
F-me 2.84 2.12 2.87

Nap-me 2.55 1.70 2.60

3.1 Discussion

Most of these optical gap calculations are close to experiment, with CIS being the closest

method by far. TDDFT and BSE consistently underestimated the optical gap of Bp. Si et

al. also encountered this problem with Bp optical gap calculations, and this is discussed in

detail in Section 3.2. First some more general observations of these optical gap calculations

will be addressed.

Choice of Geometry: By comparing Table 3.3 and Table 3.4, we clearly see that the the

optical gaps calculated on ground-state geometries were all much higher than those calculated

on excited-state structures. These excited-state geometry calculations were an attempt to

estimate the Stokes shifts of the molecules in the Bp-F-Nap system – the decrease in optical

gap due to geometric relaxation. This attempt failed, as the resulting optical gaps are much

lower than experimental values. All geometries were optimized in DFT – a ground-state

theory – so it is more likely that the excited-state geometries are the cause of this error.

Furthermore, it it well-known that excited-state calculations are very sensitive to geometry,

and especially triplet-state calculations. For this reason, only ground-state geometries are

used in the following calculations.

Tamm-Dancoff Approximation: All BSE calculations and most TDDFT calculations

were done within the Tamm-Dancoff approximation [8], which restricts the excitation space

to only transitions from occupied to virtual/unoccupied orbitals. It has been shown that
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this approximation should not be applied to small systems, or systems with strong exciton

localization [32], such as the systems that we are investigating. The code we used for BSE

calculations – RGWBS – uses the Tamm-Dancoff approximation by default, and all attempts

to run calculations without it failed. We were able to calculate TDDFT excitations without

the Tamm-Dancoff approximation using Q-Chem, but this had no effect on the excitation

energies.

CIS calculations were the closest to experimental values by far. However this does not

indicate that CIS is a superior method; it is likely by chance that CIS accurately predicts the

optical gaps of Bp, F, and Nap. The excitation model gets more physically accurate from CIS

to TDDFT to BSE, yet the performance of these methods varies wildly. Each method has

been shown to be superior for different systems [6, 31, 36], and it is very difficult to predict

which model will be better for a new system. For this reason we conclude that CIS is not

the superior method, but just lucky with the Bp-F-Nap system. Instead it is recommended

to use a more complete excitation model such as TDDFT or BSE.

The failure of TDDFT and BSE at predicting the Bp optical gap needs to be addressed.

There are many sources of error in optical gap calculations, especially for triplets. But the

more common sources of error cannot account for this severe underestimation of Bp’s optical

gap. This underestimation was reported by Si et al. in [11], and a discussion on this error

follows.

3.2 Discussion – Benzophenone

After calculating the optical gap of benzophenone, Si et al. found that the spin and

charge densities were too high on the oxygen atom. To force their calculations to better

resemble experiment, Si et al. used CDFT to constrain -0.1e on benzophenone’s oxygen, and

one-third of the triplet spin density on benzophenone’s benzene rings4 [11]. Many different

calculations were tested to explore why this error in Mulliken populations was occurring;

4This method could not be implemented using Parsec and RGWBS, so it was unable to correct these BSE
calculations as they did.
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these are listed below.

We find that both excited-state DFT calculations and ground-state TDDFT calculations

also result in too much Mulliken charge localized on oxygen (see Table 3.6). However, excited-

state TDDFT calculations find a Mulliken charge population very close to experiment, and

even closer when using a water solvent model. This suggests that DFT may only predict

ground-state Mulliken populations, even for excited-state calculations. This problem appears

to be solved by using TDDFT excited-state calculations, and more so when using a water

solvent model. However, experimental optical gaps of Bp do not depend on the choice of

solvent, indicating that the inclusion of solvent effects is just approximating the physical

effect that alters Bp’s charge populations. We made many attempts to find the source of

this error.

Electronic Solvent Effects: One possible cause for this underestimation is solvent effects.

When an H2O solvent model was used in TDDFT calculations, the optical gap increased by

about 0.3 eV, making it much closer to experimental values. However upon closer inspection

it appeared that the Mulliken charge populations were nearly unchanged after using a solvent

(see Table 3.6). It appears that that TDDFT excited states correctly predict the charge

population on oxygen (spin populations were unavailable in Q-Chem), but still underestimate

the optical gap. It is possible that the spin populations in the TDDFT calculations are still

incorrect, and that the spin constraint used by Si et al. would correctly adjust the optical

gap.

Solvent effects and charge/spin constraints are clearly just rough approximations for

the actual behavior of the benzophenone excitation. These calculations still underestimate

the gap after including quasiparticle effects (GW) and electron-hole interactions (BSE), so

another physical effect must be playing a role. The SM8 solvent model does not include for

variations in the geometry due to solvent and thermal effects, and this variation in geometry

may have a large effect on the excitation energy.
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Table 3.6: Mulliken populations on benzophenone oxygen

TDDFT Lit. [11]
no solvent in H2O DFT Pre-constraint Post-constraint

ground-state -0.43 -0.41
-0.33 -0.10

triplet-state 0.04 -0.04 -0.42

Variations in Geometry: It has been shown in this work that excitation energies are

extremely sensitive to the choice of geometry. Even small variations in the geometry can

therefore have a significant impact on the excitation energy, such variations that can be

caused by thermal and solvent effects. A recent computational study [37] of phenalenone

(a planar molecule, see Figure 3.1) found that out-of-plane vibrational modes significantly

affected energy levels. This may be explained by its molecular structure: phenalenone is pla-

nar, with an oxygen on the outer edge of the molecule. Because of this oxygen, phenalenone

is very polar, which is increased in a polar solvent. This high polarity creates an electric field

along the molecular plane; even small displacements out of this plane – and electric field –

can cause a large change in energy.

Like phenalenone, Bp has a near-planar structure, and an outlying oxygen (see figure

Figure 3.2 which induces a high polarity [38]. These similarities suggest that small out-

of-plane displacements may also have a large effect on the energy of Bp. This hypothesis

was tested very simply, by manually rotating the benzene rings of Bp and re-calculating the

triplet excitation energy. Both benzene rings were rotated symmetrically, along the C-C bond

between the benzene ring and the carbonyl group of Bp. These calculations (see Table 3.7)

show that rotating the benzene rings has a very small effect on the triplet excitation energy5.

Because these rotations had such a small effect on the triplet excitation energy, it

cannot be concluded that such small displacements in geometry account for the problem

with TDDFT and BSE calculations. Instead, it may simply be that the hybrid and GGA

5These calculations used a different optimized geometry for Bp, so the energies are slightly different from
those reported earlier.
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Figure 3.1: Phenalenone molecule

(a) Front view (b) Side view

Figure 3.2: Bp molecule
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Table 3.7: Lowest triplet energy of Bp, by angle between benzene rings

Excitation energies (eV)
Angle between benzenes CIS TDDFT(B3LYP)

33.9° 2.83 2.92
54.5°(ground state geometry) 2.86 2.92
85.6° 2.92 2.98
90.8° 2.93 3.00

exchange-correlation functionals cannot calculate the correct correlation for Bp.

CI Convergence: CIS appears to be the best excitation method for estimating triplet

excitation energies on the Bp-F-Nap system. However CIS excitation energies are only reli-

able if they are converged – that is, if including larger excited Slater determinants (doubles,

triples, etc.) does not change the result. Adding larger excitations includes more correlation,

and for many systems the correlation is mostly accounted for by only the single and double

excitations [39] – for example, in a CISD calculation. A CISD calculation was run on Bp

(see Table 3.8), which shows that these CIS energies are in fact not converged, and therefore

unreliable. These calculations were done in Q-Chem, using the RI approximation [40].

Table 3.8: Lowest CIS and CISD energies of Bp

Excitation energies (eV)
triplet state CIS CISD CISD correction

1 3.11 4.03 0.92
2 3.23 4.25 1.02
3 4.15 3.57 -0.58
4 4.52 4.92 0.40

Because the CISD correction is so large, this result is not yet converged. In order to

converge the CI calculations, it is necessary to add triples (CISDT), quadruples (CISDTQ),

and so on, until the excitation energy is unchanged. However these calculations were not
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possible with the software and computational resources currently available. Within the

CISD level of accuracy, the lowest triplet state is 3.57 eV, which is about 0.6 eV higher than

experiment, and about 1.0 eV above the BSE result. Therefore we cannot reconcile the CI

and BSE results; these errors likely have different causes. It is still unclear why BSE does not

reproduce experimental excitation energies, and the CI calculations are not yet converged.

It appears that the constrained-DFT method employed by Si et al. in [11] successfully

accounted for electron correlation, which CIS, TDDFT, and BSE failed to do. However this

method is very empirical, and requires very specific knowledge of the electronic structure of

the system in question. There are many unanswered questions regarding these excited-state

calculations, which should be addressed in a future study.
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CHAPTER 4

COMPUTATIONAL IMPLEMENTATION: COUPLING

This chapter discusses calculations of electronic coupling for TTET in the Bp-F-Nap

system. In particular, the Hartree-Fock method and the FSD method are studied in detail.

All geometries used in these calculations were taken from the complete Bp-F-Nap geom-

etry, which was optimized into the ground electronic state, using DFT with PBE in DMol.

Each fragment used in these coupling calculations was taken from this geometry, and pas-

sivated with hydrogen – but not re-optimized. For example, the Bp-me fragment used in

these coupling calculations has the same benzophenone geometry as does Bp-F-Nap, and

one bridging carbon, which is then passivated with hydrogen. The intention is to make this

method provide the highest level of accuracy using only adiabatic states – that is, eigenstates

of the systems in question.

HF Couping All HF coupling energies were calculated in NWChem [41]. The process used

was to:

1. Generate the ground- and triplet-state HF orbitals on the donor and acceptor frag-

ments: (D|D3), (D||D), (A||A3), and (A||A)

2. Combine these orbitals into pseudo-diabatic initial and final states: (D,A||D3, A) and

(D,A||D,A3)

3. Calculate the coupling between these states.

Instead of generating these diabatic states on the donor and acceptor fragments sep-

arately, it is also possible to use CDFT to generate diabatic-like states on the complete

donor-acceptor dimer. This method is not recommended, however, because often the or-

bitals calculated on the dimer system will be nearly orthogonal, which will make the coupling
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between states artificially low.6

HF coupling results for the Bp→F transition (see Table 4.1) are much smaller than

Si’s. This difference may be in part due to our using geometries optimized into the ground

state, and his using CDFT with a localized triplet; however these results are so small that

our methods likely differ more significantly. More importantly, these calculations were very

sensitive to the choice of donor and acceptor; for this reason, HF coupling was not calculated

for the rest of the Bp-F-Nap system.

The choice of basis set is also important for coupling calculations. The 6-31G*, 6-31+G*,

DZP, and TZVP basis sets all produced similar coupling results. The only basis set that is

not recommended for use in these calculations is 6-31G, which does not include polarization

and cannot account for longer-range effects. For this reason, all further calculations with

Q-Chem used 6-31G*.

Table 4.1: HF coupling calculations for the Bp→F transition (meV)

Basis Sets

donor ↔ acceptor 6-31G 6-31G* 6-31+G* DZP (Dunning) TZVP

Bp-me↔F 0.57 0.25 0.25 0.22 0.25
Bp↔F-me 0.19 1.63 1.63 2.01 1.94

Bp↔F 0.05 0.48 0.48

FSD Couping: Because FSD is based on adiabatic states, ground-state optimized geome-

tries can be used. These calculations used the Q-Chem FSD function, which calculates

TDA-CIS excited states; the 6-31+G* basis set was used for all calculations. FSD is very

robust under different choices of the donor and acceptor fragment, as shown in Table 4.3.

However FSD still requires the user to select the proper excitations, which is not always

trivial.

6Thanks are due to Huashan for pointing this out.
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For this reason, FSD couplings are calculated on both two-molecule dimers, and on the

entire Bp-F-Nap molecule. While the TDDFT excitations for FSD calculations are nearly

identical for both geometries, the coupling results are very different. The coupling energies

calculated on the complete Bp-F-Nap molecule are larger than those calculated on dimers;

this is likely due to the increased orbital delocalization allowed by using the entire molecule

for DFT calculations.

FSD on Dimers: The Bp-F, F-Nap, and Bp-Nap dimers were taken from the complete

Bp-F-Nap geometry. While the Bp-F and F-Nap dimers are both complete fragments, the

Bp-Nap dimer is simply the Bp-me molecule and Nap-me molecule separated by empty

space, but in the same position and orientation as in the Bp-F-Nap molecule. The FSD

coupling energies for these dimers are listed in Table 4.2. The SM8 solvent model [35] was

also tested (with an H2O solvent), which had a significant effect on the coupling energies of

the Bp-F and Bp-Nap systems. This is likely due to the polarizability of the oxygen on Bp7.

FSD on the Bp-F-Nap Molecule: Using the entire Bp-F-Nap molecule was not always

successful. The TDDFT excitations were not always localized on either the bridge, donor, or

acceptor; in this case it was not possible to calculate FSD coupling energies. This problem

was addressed by using an H2O solvent in Q-Chem. Adding a solvent caused the TDDFT

excitations to be more localized onto the bridge, donor, and acceptor, allowing for successful

FSD calculations. These results are listed in Table 4.2. Because previous calculations showed

that FSD is robust in the choice of donor and acceptor fragments, one donor/acceptor

designation was used for each calculation.

4.1 Discussion – Coupling

When calculated on two-molecule dimers, HF coupling results are much smaller than

those from Si et al.. This difference is so large that there is likely a difference between our

7This effect was also found in the optical gap calculations of Bp, as discussed in Chapter 3.

34



Table 4.2: FSD coupling calculations, on both the complete Bp-F-Nap molecule, and its
constituent dimers (meV)

Dimers
no solvent in H2O Complete Bp-F-Nap molecule (in H2O) Lit.[11]

Bp ↔ F 0.33 1.24 2.29 3.5
F ↔ Nap 2.66 2.90 5.71 5.1
Bp ↔ Nap 1.32 3.71 6.47 1.7

Table 4.3: FSD coupling calculations for the Bp-me→F transition (meV), calculated on the
Bp-F dimer

No Solvent In H2O
donor ↔ acceptor PBE B3LYP PBE B3LYP Lit. [11]

Bp-me ↔ F 0.34 1.00 1.23 2.22
3.5Bp ↔ F-me 0.31 1.00 1.25 2.22

Bp ↔ F 0.33 1.00 1.24 2.22

methods, however this difference could not be identified. One possible cause is Si’s use of

charge and spin constraints. As discussed in Section 3.2, Si et al. used CDFT charge- and

spin-population constraints during their calculations, in order to force their DFT orbitals to

mimic those observed in experiment. Because these CDFT methods were unavailable, other

methods were used to investigate this disparity.

Solvent Effects: Solvent effects are one possible cause for DFT’s bad estimation of charge

and spin populations. As done for optical gap calculations (see Section 3), an H2O solvent

was added using Q-Chem; this raised the coupling energies by as much as 1 meV (see

Table 4.3). However, this effect is likely due to the solvent polarizing the oxygen on Bp,

pushing the orbitals closer to the center of the dimer.

Variations in Geometry: As discussed in Section 3.2, we propose that DFT’s bad estima-

tion of orbitals is due to variations in Bp geometry that are not accounted for. This effect
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will also influence the charge and spin densities on Bp, so it will likely have a significant

effect on electronic coupling calculations involving Bp as well.

Choice of Donor and Acceptor: The HF coupling method appears to be very sensitive to

choice of donor and acceptor geometry, while the FSD method does not. This is likely due to

the difference in the generation of orbitals between methods. In FSD coupling, a spatial re-

gion is chosen for the donor and acceptor. Adiabatic orbitals (composed of eigenvalues of the

system) are then calculated on the entire donor-acceptor molecule, and a linear combination

of these is calculated to maximize the spin difference between excitons. For HF coupling, the

user chooses donor and acceptor fragments, and calculates orbitals on them independently.

The HF method requires the user to determine the delocalization of orbitals between the

donor and acceptor – for example, whether a bridge atom will be included with the donor or

acceptor, or neither. There is no established method for choosing these donor and acceptor

fragments, which makes HF coupling very difficult to use empirically. In a similar way, using

the complete Bp-F-Nap molecule increases the FSD coupling energies significantly.8

Suggested Method: The HF coupling method is difficult to implement without bias – as it

is incredibly sensitive to the choice of donor and acceptor fragments. The FSD method is not

as sensitive to the donor and acceptor designations, making it a much more robust method.

FSD couplings calculated on the entire Bp-F-Nap molecule are used in the final TTET rate

calculations – rather than on each two-molecule dimer. This limits the user influence in the

calculation to choosing the donor and acceptor regions, and the results presented here have

shown that the FSD method is very robust to this choice. An H2O solvent is also used in

these calculations, for two reasons: first, the optical gap for benzophenone is much closer

to experiment using H2O (see Chapter 3), and second, using a solvent helped localize the

adiabatic orbitals onto the donor, bridge, and acceptor fragments.

8This was not possible with our implementation of HF coupling, because donors and acceptor orbitals needed
to be calculated separately.
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CHAPTER 5

COMPUTATIONAL IMPLEMENTATION: REORGANIZATION ENERGY

Reorganization energy must be estimated in order to calculate the Frank-Condon-weighted

Density of States, and it is also used to determine the type of hopping that actually occurs.

When λ � Vda for an EET process, coherent hopping will likely dominate, and the FGR

cannot be used; if λ ≈ Vda, then partially coherent hopping is likely occurring, and a different

rate expression should be used [15].

The calculated reorganization energies for the Bp → F , F → Nap, and Bp → Nap

transitions can be found in Table 5.1. The same calculations from Si et al. are also listed

in these tables for reference. These reorganization energies validate the use of equation 2.1.

Because λ is on the order of 0.1 eV, and electronic coupling is on the order of 1 meV, λ� Vif ,

indicating that these transition are incoherent.

Table 5.1: Reorganization energies for hopping transitions (eV)

Lit. [11]
transition λ4−point λvib λdirect λvib

Bp→ F 0.67 0.68 0.82 0.94
F → Nap 0.74 0.67 0.86 0.89
Bp→ Nap 0.70 0.63 0.77 0.82

5.1 Discussion

These calculations show that the harmonic approximation is valid for these molecules,

because λvib is very close (within 0.1 eV) to λ4−point[9]. This shows that our vibrational

analysis can be used with the Franck-Condon weighted DOS.

These calculations of λ are consistently about 0.2 eV lower than Si’s estimate. This

should not be interpreted as an error in my calculations or his, as there is no experimental
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data of λ available for comparison. Instead this is likely due to using different computational

packages and different XC functionals for optimization and Hessian analysis; Si used B3LYP

while this study used PBE.
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CHAPTER 6

RESULTS AND DISCUSSION: TTET RATES

Using the results presented in chapters 3, 4, and 5, and Fermi’s Golden Rule (Equation

2.1) can now be used to calculate hopping rates. Two sets of results are presented: those

using only ab initio calculations, and those using a corrected optical gap for Bp (3.11 eV).

The causes for error in the Bp optical gap calculations are discussed in section 3.2.

6.1 Final FGR Parameters

For the final rate calculations, parameters calculated on ground-state PBE-optimized

geometries are used, because PBE has been shown to be more accurate at optimizations

and energy calculations than LDA. Although the optical gaps calculated using LDA are

consistently higher than PBE (and therefore closer to experimental values), the calculated

driving force is the same using both functionals. The final optical gaps, electronic couplings,

and reorganization energies are listed in table Table 6.1.

Table 6.1: Final Rate Parameters

Bp→ F F → Nap Bp→ Nap

∆Eopt (eV) -0.30 0.30 0.00
∆Eopt − corrected (eV) 0.35 0.30 0.65
Vif (meV) 2.29 5.71 6.47
λ4−point(eV) 0.67 0.74 0.70
λvib (eV) 0.68 0.67 0.63

Optical Gap: The GW+BSE optical gap is used in the final rate calculations. This method

is the most physically complete - accounting for both quasiparticle effects and exciton-hole

interactions. CIS calculations are much closer to experimental values, however this will not

always be the case. The GW+BSE gap will likely be more accurate when more effects are

taken into account, as discussed in Section 3.2.
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Electronic Coupling: FSD coupling energies calculated on the complete Bp-F-Nap molecule

are used, calculated with an H2O solvent, and the PBE functional. These calculations allow

for orbitals to delocalize across the entire molecule rather than confining them to a dimer,

making them less subject to user influence. It may be more accurate to use B3LYP rather

than PBE, but this functional was too computationally intensive for the resources we had

available.

Exciton-Phonon Interaction: The reorganization energies listed in table Table 6.1 are not

used explicitly in the FGR; they are listed to show the validity of the phonon decomposition

of Bp, F, and Nap. These phonon spectra are used in the Franck-Condon weighted density

of states, which accounts directly for the exciton-phonon interaction. The phonon spectra

and Huang-Rhys factors for each molecule are shown in figure Figure 6.1. The FCWD is

plotted for each molecule, by optical-gap driving force ∆G, in figure Figure 6.2.
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Figure 6.1: Modal reorganization energies λi and Huang-Rhys factors Si
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6.2 Final Rates and Discussion

Two sets of rates are calculated: those using only ab initio calculations, and those using

calculations with a corrected optical gap for Bp. Both are listed in table Table 6.2.

Table 6.2: Final Hopping Rate Calculations, at 300K (1010 Hz)

Ab initio Using corrected Bp Si et al. [11] Expt. [10]

Bp→ F 4.56 5.04 2.50 0.64
F → Nap 20.70 20.70 8.90 � 0.64
Bp→ Nap 4.00 48.00 2.60 0.95

The final rate calculations are significantly higher than both the computational and

experimental benchmarks. The most likely cause for error in these calculations is the elec-

tronic coupling and the DOS. The optical gap values for the donor, bridge, and acceptor are

consistent throughout literature, and these calculations are close to these literature values.

However there are no experimental values to which we may compare these coupling and DOS

calculations.

Density of States: The DOSs for each hopping step (see figure Figure 6.1) have a maximum

at ∆G ≈ 0.6 eV; that is, the fastest hopping should therefore occur when the donor and

acceptor excitation energies differ by about 0.6 eV. The driving force for Bp→Nap hopping
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is positioned at this maximum (0.65 eV), giving it the highest ρ value of all three transitions.

The other two transitions, Bp→F and F→Nap, have nearly equal values for ρ, which are

both roughly 2/3 that of Bp→Nap. However the final rates indicate that Bp→Nap hopping

is faster than Bp→F by a factor of 10, which is consistent with experimental values (although

these rate calculations are much higher than those in experiment). The calculations of ρ are

much more robust than the calculations of Vif , which is likely a much greater source of error.

Electronic Coupling: Hopping rates in equation 2.1 are very sensitive to Vif ; this is because

Vif � 1, and the rate is proportional to |Vif |2. Even a small error in Vif can significantly affect

the rate; this problem is complicated by the lack of experimental values, and the absence

of a proven method of calculating Vif for TTET. These problems motivated the detailed

study of electronic coupling in chapter 4. Yet even with the most robust and least empirical

method available, these results are still much higher than the computational benchmark

[11], and predict much higher rates than the experimental benchmark [10]. Specifically, Vif

for the Bp → Nap transition is much higher than that of Bp→F and F→Nap, which is

likely unphysical due to the large separation between the Bp and Nap molecules. Electronic

coupling is the least-well understood part of these rate calculations; a deeper study is clearly

needed to determine the best method for calculating this value.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

This thesis research investigated the calculation of incoherent triplet-triplet exciton trans-

port rates on the benzophenone-fluorene-naphthalene molecule. These rates were calculated

using Fermi’s golden rule, which relies on three main parameters of the system – optical gap,

electronic coupling, and density of states. However there is little consensus on the correct

methods for calculating each of these parameters, and studies in literature often contain un-

explained assumptions and empirical adjustments. This thesis proposed many improvements

to the calculations found in literature, and addressed the commonly-made assumptions. Of

particular interest was the benzophenone molecule, which is very efficient at triplet genera-

tion, yet poses many computational challenges. It is found that the commonly-encountered

problem in calculating Bp excitation energies is caused by small fluctuations in molecular

geometry due to solvent and thermal effects. The suggestions proposed in this thesis can be

expected to enhance our understanding of TTET, and better enable accurate prediction of

TTET rates on new systems.

Optical Gap: In the literature, explanations are rarely given for the choice of method for

calculating optical gaps. TDDFT and BSE – using exchange-correlation functionals like PBE

and B3LYP – are commonly used with little justification. The method closest to experimental

values is then decided as the best method; this interpretation is empirical, and cannot be

used in predictive analyses. However even the most advanced excitation methods do not

always succeed. While TDDFT and BSE produce good results for fluorene and naphthalene,

they underestimate the optical gap of benzophenone, the donor molecule of the Bp-F-Nap

system. On the other hand, the CIS excitation method matches experiment very well. This

problem was also encountered by Si et al. in their work [11], and they adjusted their DFT

optical gap calculations by imposing experimentally-measured charge and spin constraints.
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In this study, many calculations were tested to find the source of this error within TDDFT

and BSE.

Adding an electronic H2O solvent model raised the TDDFT benzophenone optical gap by

0.3 eV, much closer to experimental values; this had a similar effect to Si’s charge and spin

constraints, by adjusting the benzophenone charge and spin populations. However, choosing

to use this solvent model is no less empirical than Si’s constraints, making it difficult for use

in predictive analyses.

Another possibility was that this underestimation of the Bp optical gap is due to small

displacements in Bp caused by solvent and thermal effects. It has been shown that in

phenalenone, a planar molecule similar to Bp, even small out-of-plane vibrational modes

cause large changes in the energy [37]. Phenalenone is a very polar molecule, which induces

a local electric field; these small out-of-plane displacements displace parts of the phenalenone

molecule out of this electric field, causing a large change in energy.

Benzophenone is also very polar and near-planar, suggesting that out-of-plane displace-

ments in Bp will have a similarly large effect on energy. However it is found that such

displacements have almost no effect on the triplet excitation energy in Bp – even with large

out-of-plane displacements.

Finally, it was found that CIS calculations, which had provided results closest to exper-

imental values, are unconverged. When doubly-excited Slater determinants are added (a

CISD calculation), the CIS excitation energies are changed by as much as 1 eV. Therefore,

larger excitations (triples, quadruples, etc.) need to be added before the CI result is con-

verged. Furthermore, the CISD triplet energy is roughly 1 eV higher than the BSE result, so

we cannot conclude that these errors stem from a similar issue. It appears that the CDFT

method used by Si et al. successfully accounted for electron correlation, while TDDFT, BSE,

and CIS failed. A deeper study of these calculations is required to develop a reliable ab initio

method for finding excitation energies.
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Electronic Coupling: Recently, new methods for calculating TTET coupling have been

proposed. Two of these methods are tested in this thesis – Hartree-Fock coupling and

fragment-spin-difference (FSD) coupling. Hartree-Fock coupling is found to be very sensitive

to the choice of the donor and acceptor molecular fragment, making it very sensitive to user

influence. Instead it is suggested to use FSD coupling, which is found to be robust under

the choice of donor and acceptor fragment.

This can be understood by the fundamental difference between HF and FSD coupling.

Both methods assume that the physically correct (diabatic) initial and final states have the

triplet spin density mostly localized on the donor and acceptor moiety. However, the CDFT-

based HF method requires the user to choose the exact donor and acceptor regions in which

the spin is localized, while the FSD method maximizes a spin difference between the donor

and acceptor regions, allowing for spin density to be delocalized across the entire model.

This may explain why FSD is more robust to the choice of donor and acceptor regions than

HF.

While the FSD method is very robust to user influence, it still requires excitations to

be localized on the donor, bridge, and acceptor. The initial excitations calculated for the

FSD method were not well-localized, so an H2O solvent model was used to force them onto

the donor, bridge, and acceptor. In the future a better method should be developed to find

localized excitations.

The final coupling calculations in this work can still be improved. In particular, the

calculated Bp-Nap coupling is greater than that for Bp-F – which is likely unphysical, as the

Bp and Nap molecules are not adjacent, while Bp and F are. This result causes the Bp→Nap

hopping rate to be roughly 10 times faster than that of Bp→Nap, which is inconsistent with

experiment; this error should also be investigated more carefully.

Choice of Geometry: Some studies in literature use ground-state optimized geometries,

while others use excited-state optimized geometries. While there are many excited-state
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theories capable of optimization, the resulting geometries have not yet been proven to reflect

reality. It is found that excited-state optimized geometries tend to over-estimate the decrease

in energy gap due to relaxation (the Stokes shift). This error is consistent across all excitation

calculation methods; for this reason, it is recommended to use only ground-state optimized

geometries until an optimization method has been proven to be successful.

Density of States: The Franck-Condon weighted density of states was used in this the-

sis research, which incorporates exciton-phonon coupling within the incoherent transport

regime. While this method has been used with success in the past [17], its accuracy and

robustness should still be studied. Because there is no experimental data with which to

compare DOS calculations, it should be compared to other DOS measures such as the MJL

equation and Marcus theory

The final TTET rates calculated in this work are much higher than those measured in

experiment. Because the optical gap calculations have been compared to experiment, this

error is likely due to the DOS or the electronic coupling. To validate the Franck-Condon

weighted DOS, a comprehensive study should compare the available DOS methods, and their

utility in calculating TTET rates. Electronic coupling calculations also require further study.

FSD coupling is found to be more robust and less empirical than Hartree-Fock coupling, yet

there are still difficulties with this method. Mainly, the problems with excitation energy

calculations also affect electronic coupling calculations. The choice of excitation method,

exchange-correlation functional, basis set, and solvent models also play a role in coupling

calculation methods, and these variables should be studied. The FSD coupling method

also relies on the assumption that the physically correct initial and final states have the

triplet spin density mostly localized on the donor and acceptor moieties, respectively. This

assumption has not been stated in the literature, but it should be well understood when

using FSD (or HF coupling) in rate calculations.
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The Bp-F-Nap molecule is a perfect system to test TTET rate calculation methods. The

Bp molecule is very important to triplet generation and transport, due to high intersystem

crossing into the triplet state. This property also causes many difficulties in calculating

accurate excitation energies and electronic orbitals, which have not yet been resolved. The

experimental and computational work on this molecule also provides a good benchmark to

which new methods may be compared. This thesis research has studied some of the chal-

lenges in calculating TTET rates on the Bp-F-Nap molecule, particularly in choosing which

geometries to use, and identifying the most robust methods for calculating excitation energies

and electronic coupling. A future study using QM/MM methods is proposed for improving

excitation energy and coupling calculations. The suggestions proposed in this thesis are

general – they do not apply to only Bp-F-Nap. This thesis has suggested improvements to

calculations found in the literature, and the numerous approximations made in literature

have been tested and discussed. The suggestions proposed in this thesis should be applied

to new ab initio studies of TTET, to ensure that the results are as robust and unempirical

as possible.
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