Accountability as a Service

Adam Bender, Neil Spring, Dave Levin, Bobby Bhattacharjee
University of Maryland, College Park
{bender, nspring, dml, bobby } @cs.umd.edu

Abstract

We propose that accountability be a first-class network ser-
vice, independent of addressing and routing. We design
a scheme for allowing accountability services, rather than
connectivity-providing ISPs, to vouch for traffic, allowing
victims to report abuse, filter abusive traffic, and isolate ma-
licious senders. We discuss how accountability services may
evolve, how they may facilitate new applications, and the
implications of shifting the burden of network policing to a
dedicated service.

1 Introduction

Accountability in a network is a means to identify the
sources of traffic for two purposes: to selectively filter re-
peated unwanted, abusive, or non-compliant traffic from ma-
licious sources on a per-destination basis, while permitting
traffic from others to proceed, and to report and disconnect
abusive machines before they attack others. IP addresses,
if unforgeable, might serve to identify the sources of abuse,
and Internet Service Providers (ISPs), if responsible for the
actions of users of their networks, might disconnect compro-
mised or abusive machines. In practice, neither is reliable.

The cooperation between and technical sophistication of
operators of ISP networks has led to the assumption that
ISPs actively police their networks: that all that is required
to block misbehaving traffic is to trace it to the source ISP.
Good operators react to reported abuse by disconnecting
machines, repairing compromised hosts, and helping other
operators do the same. Ingress filtering [11] and trace-
back [23, 3], if universally deployed, can simplify finding
the machine that sent abusive traffic. However, the architec-
tural ossification implied by this trust model, especially to
mobility and in discouraging overlay routing, makes deploy-
ment costly. The timeliness with which misbehavior must
be traced and the likelihood that a stepping stone [31] hides
the true source make tracing to an ISP insufficient. Even if
the source can be found, the source’s ISP may not discon-
nect a paying customer based on a remote host’s accusation,
making traceback potentially ineffective.

The interests of ISPs include protecting the network, max-
imizing revenue, and reducing legal liability. They are not
entirely aligned with the interests of endpoints—protecting
an access link from spurious traffic, protecting a server or
client from abuse, maximizing anonymity as a sender, max-
imizing accountability as a receiver. Host accountability is

a tussle [5], one in which a specific, unsatisfactory design
point has been implicitly chosen in the Internet architecture.
It has neither sufficient accountability to discourage abuse
nor sufficient anonymity to (by architectural means) support
free speech and anonymous access to information. Buying
connectivity from an ISP may not imply access to legal pro-
tection from that ISP as well.

Architectural support for accountability should provide
both technical and social benefits. An ideal accountability
architecture would support overlay networks, in which an
application-layer relay may retransmit packets generated far
away without accepting responsibility for their contents. It
would permit anonymity, perhaps through onion routing [13]
or through opaque addresses that do not identify the end-
point globally [12]. It would not restrict mobility, because
source addresses within an ISP no longer imply that the ISP
“vouches for” sent traffic. Users would know what privacy
is provided. Servers would know how to identify, filter, and
report repeat abusers.

In this paper, we argue for the separation of routing from
accountability (which we term accountability as a service),
and present a mechanism achieving this goal. A new set of
services that we propose assume the role of “vouching for”
the traffic generated by endpoints, allowing this endorsement
to be well-defined, proxiable, and acceptable to both sender
and receiver. This would supplant the implied, poorly de-
fined endorsement of traffic by the ISP from which it origi-
nates, and move the tussle point from between the users and
ISPs to between the users and accountability service(s). We
believe that allowing a third party to vouch for traffic re-
quires public keys and certificates, but that accountability as
a service permits reasonably efficient implementation (for
the benefit achieved). Each ISP retains a role in ensuring
that outgoing packets are properly signed, but this filtering
is deterministic and does not require inspecting packet pay-
load [14]. Gateways in the network can be delegated the
right to filter traffic on behalf of a destination as an optimiza-
tion. Users and end-hosts decide which level of accountabil-
ity in received traffic or anonymity in sent traffic is required.

We first describe related work that focuses primarily on
ISP-level accountability and the tasks of a responsible net-
work administrator in Section 2. We present an overview
of an accountability service in Section 3, then describe
two designs—one straightforward, one designed for cheap
verification—for verifying accountable source identification



signatures in Section 4. We describe the interactions with ap-
plications and users, who will need to make decisions about
their information, in Section 5. Finally, we discuss the im-
plications of this architectural principle of separating routing
from accountability in Section 6.

2 Related Work

Proposals for increasing accountability typically rely on the
model that ISPs are responsible for policing the activities of
their customers, investigating allegations of abuse and dis-
connecting guilty nodes, and that ISPs will address reports
of abuse from their customers by installing filters upstream.
Technical support for tracing abusive traffic to an ISP and
selectively filtering abusive traffic fit well with this model;
we approach accountability differently.

We define the role of ISP policing to include only ver-
ification that packets are correctly signed; approaches that
trace packets to the source ISP remain useful, to ensure
that signatures were checked. We draw heavily from Pass-
ports [15], allow a source ISP to cheaply sign packets for
delivery through each AS in a BGP path. The passport indi-
cates that the source address of the packet is correct but does
not provide a means to map that address to a responsible
sender without the cooperation of the origin ISP.

VPNs that traverse firewalls allow the VPN server to
“vouch for” the traffic of an authorized client at the other
end of an encrypted tunnel, placing a source address on each
packet as if the client were part of the internal network. The
effect is similar, in that responsibility for traffic is assumed
by a remote server. However, because all traffic traverses
the tunnel, privacy is limited. A firewall blocks all “unac-
countable” traffic from entering the internal network from
the outside Internet.

Unsolicited traffic, once its source is identified, can be
blocked explicitly. Pi [28] and AITF [2] allow destinations
to block incoming traffic that follows a recorded path (the
path identifies the source). The victim authenticates the re-
quest to block traffic with a three way handshake to show
that the request comes from the victim (or a node that can
see its traffic). Simon et al. [22] define accountable traffic
to be identifiable (using persistent identifiers) and defensible
(identifiers are blockable). End-hosts can block traffic at the
sender’s AS, ASes must deploy ingress filtering and be able
to map packets back to the sender.

Unsolicited traffic can also be blocked implicitly.
TVA [30] prioritizes ongoing conversations over unsolicited
messages. Routers insert authorization material into packets;
if the destination returns that authorization material to the
source, the source can send subsequent packets without risk-
ing rate limits. CAT [4] also allows senders to prove that sub-
sequent packets are legitimate; an in-network “cookie box”
provides flow cookies to senders that complete a three-way
handshake.

The source discovered by traceback may not be the ini-
tial source of an attack. To skirt the accountability im-
plied by sending directly to a victim, attackers use stepping

stones [31]. Stepping stones can be detected [31, 24], at-
tackers can attempt to evade detection, and some evasion
methods can themselves be detected [9]. Promoting account-
ability to a first-class network operation may make stepping
stones less common: client machines will likely expect in-
bound traffic to carry high-accountability, which might not
be provided by a hacker.

Approaches to stop spoofed source addresses in elec-
tronic mail are similar. SPF [27] disallows spoofed source
(email) addresses by checking that the relay has been ap-
proved to carry mail from the source address by being listed
in DNS; this interferes with sending email through other
relays. The Mail Abuse Prevention System (MAPS) [18]
real-time blackhole list (RBL) is similar to an accountabil-
ity service in our architecture, discovering abusive senders
and publishing a list of senders who should be disconnected.
Because SMTP connections require a TCP handshake, IP ad-
dress spoofing is less of an issue.

3 The Accountability Service

The role of an accountability service is to provide authenti-
cated clients with identifiers that can be used to mark pack-
ets accountable. Other clients of the service can block con-
tinued unwanted traffic, and report malicious, accountable
packets (that they receive) to the service for further action.
Accountability services may differentiate from each other
by how much anonymity or accountability they provide and
what they require from their clients: the number of identi-
fiers given to each client, the intrusiveness of the proof of
identity, whether proof of malice is required to disclose a
client’s identity, whether the accountability service holds an
escrowed deposit for damages caused, the degree of trust an
accountability service holds with clients and with servers,
and other qualities. A client may choose among different
accountability servers when sending or when receiving; we
discuss the implications of such choice in Section 6.

We propose that accountability services will be designed
as follows. The accountability service holds identities in
escrow and typically reveals them only in cases of severe,
proven abuse, or perhaps only by subpoena. The account-
ability service, not necessarily the ISP, vouches for the traf-
fic of its clients; it collects reports of abuse and decides
how to address them. Accountability services do not broker
connections individually: accountability identifiers are inde-
pendent of destination and may be reused. A sender may
use different identifiers for different destinations to preserve
anonymity. Accountability identifiers are proxiable: relayed
packets may bear the identifiers of the sender, and relayed
application-layer requests may include identifying headers
(much like HTTP’s proxied-for header, which identifies the
original client). Receivers specify what accountability ser-
vices they accept and what level of accountability they re-
quire. A victim can ask the network to filter traffic that has a
specific identifier for any reason; the accountability service
need not verify that the traffic was malicious or penalize the
source.



As expected, our goals include incremental deployability,
a compact representation of identifiers, and efficient verifi-
cation. However, we do not intend network-layer account-
ability to replace application-layer authorization; although
IP addresses have been used this way, e.g., for rsh and for
Web access, we hope to not revisit those mistakes.

4 Design

We now describe a system to achieve these goals. We be-
gin with a description of a straightforward signature-based
approach. Then we present a service using lightweight
cryptographic techniques to achieve a higher-performance
solution comparable to, and building upon, recent propos-
als [30, 15, 2]. We describe how to contact an accountabil-
ity service without accountability identifiers (bootstrapping)
and how to report the error of missing or inadequate account-
ability identifiers (accountability faults).

4.1 A Straw-man Protocol: Signing Every Packet

Today, signed certificates bind keys to identities. When an
online merchant wants to prove its identity to others, it first
proves its identity to a trusted, well-known certificate au-
thority (CA) which then issues a public key certificate. This
certificate typically contains the name and public key of the
merchant and is signed by the CA’s private key. It can be ver-
ified by anyone who has the CA’s public key and represents
a statement that the CA vouches for the merchant’s identity.

This expression of identity leads to a straightforward
method of implementing accountability. An accountability
service, A, acts as a CA, and provides a sender S with a key
pair (Spup,Spriv) and signed certificate certy = {S ,spub}Ap”.V.
In each packet, S includes a signed hash of the packet con-
tents and certs. Anyone on the forwarding path, including
the receiver, can verify that certg is valid certificate and that
the packet hash was signed with s,,;,. Any packet with an
invalid certificate or a bad signature is dropped.

A receiver can block an abusive sender by filtering packets
that carry the abusive sender’s certificate. Certificates expire,
and those of abusive clients would not be renewed (lest fewer
receivers accept the accountability service), so filters need
not last longer than certificates.

Although routers have the information to verify all signa-
tures, the process is too expensive, so routers would likely
leave checking to the receiver. The scheme is thus vulnera-
ble to senders that use bogus certificates: the network wastes
bandwidth and the receiver wastes computation to check bo-
gus certificates, but learns nothing of the sender’s identity.

4.2 An Efficient Protocol: Verifying Near the Source
We next compel ISPs to verify signatures near the source:
a source using invalid signatures, violating the only rule
of accountable traffic, would be filtered and disconnected.
We rely on the first-hop ISP to verify certificates and sig-
natures so that invalid ones are caught before they traverse
the network. To ensure that routers participate, we make use
of Passports [15], a method of authenticating the ISP from
which a packet originated.

cert., ts cert_, ts cert., ts
S o 1@ Verify
h(pkt, g") h(pkt, g") h(pkt, g") sender
ASH h(Pkt, ks) ASI! h(Pkf, ks) ASl, h(pkt, ks)
@ Trace
AS;, h(pkt, k;) AS;, h(pkt, k; ), back

@ Verify @ Verify i
sender on path
Figure 1: Ensuring the source ISP verifies certificates and
enforcing that certificate holders compute valid signatures.
Shaded regions represent pieces not verified at the next hop.
A firewall operating on the receiver’s behalf filters incoming
traffic; the firewall may be colocated with the receiver or
protect an access link.

In this protocol, sender S and receiver R agree to use ac-
countability service A. A includes in its public key a group
G and a generator g of G. Each client C of A has as a private
key integer ¢ (lower case), public key g, and the certificate
certc signed by A. When S, with public key g°, wants to
communicate with R, it must know R’s public key, g". The
sender and receiver create a shared Diffie-Hellman [8] key,
g"", by raising the other’s public key to their private key, ob-
taining (g*)" = (¢")* in G.

§’s ISP, Py, verifies certs (using A ;) and that S knows
s before forwarding, using the following procedure. If P; is
also a customer of A, it will have a public key g”1, so S can
compute a shared key kg = (g1)* = (g*)P!. Otherwise, P,
issues a challenge response protocol (over a secure, authen-
ticated channel) by taking g from A,,;, choosing a random
nonce 7, and giving g" to S. If S responds with g™ = (g*)",
Py knows that S knows s and can set kg. P, caches certg and
ks for fast verification in the future. S includes in each of
its outgoing packets (1) certy (the certificate assigned by A),
(2) a timestamp, used to prevent replay attacks, (3) a hash hg
of the packet contents, timestamp, certs, and the receiver’s
shared key (hg = h(pkt,ts,certs,g"™)), and (4) a hash hy of
the packet contents and ks (h; = h(pkt,ts,certs,ks)). We
assume that, when used with a secret key, /() provides the
unforgeable property of a MAC. The ISP P; is expected to
check that certg matches the cached value, that the times-
tamp is valid, and that i} = h(pkt,ts,certs, ks) matches ;.

The receiver validates certg to learn that A vouches for S.
If certy is not filtered, the receiver computes the shared key
g" and caches it with certg; further traffic from S can be
accepted by verifying only that hg was created using g"*. As
long as valid certificates appear in each packet, R can quickly
distinguish good and bad senders.

To identify an ISP that does not check certificates in pack-
ets, R may trace packets it receives back to their source ISP
using Passports [15]. P; arranges a shared key, &;, between
itself and each ISP P; on the path to R. To do so, P; must have
each P;’s public key, which is distributed in BGP. The public
key infrastructure (PKI) used by Passports is separate from
any accountability service’s PKI. P; inserts into each packet



from S to R P;’s AS number and hash h; = h(pkz,ts, certs, k;).
When P, receives the packet, it checks the hash and drops the
packet if it is invalid or missing. R may examine its incom-
ing packets’ list of ISPs to not only trace the packet back to
Py, but to present evidence of non-compliance to ISPs that
presumably have a shared key with P;. If R receives a packet
with an invalid certificate, it can show to any P; on the S — R
path a packet from S that was hashed by P; using the shared
key of P; and P;. P; would be able to verify that certg is in-
valid (by using A,,y), thereby proving that Py did not check
it. P; could in turn issue an abuse report to Py or, in an ex-
treme case, not accept any further traffic from P;.

The Passport facilitates pushing filters on the path from
S to R. R asks its ISP, P,, to block traffic from certg on its
behalf. P, sends a “please block” message to a subset of the
ISPs in a packet bearing certs. The message sent to P; con-
sists of certg, R’s IP address, and the hash #(R’s IP, g° . k; ,,)
where k; , is the shared Passports key between P; and P,. No
host can forge a message that would block a sender’s packets
from reaching R without knowing k; ,. Our scheme improves
upon AITF [2] in that AITF allows anyone who can observe
traffic from S to R to block that traffic and requires a 3-way
handshake; in ours, only R’s ISP may block traffic destined
for R and only a single message is needed.

If blocking is not sufficient to stop abuse, R can present
evidence of abuse to A. Depending on A’s policy, it may
reveal the identity of S, forbid S further use of the service,
charge S a fine for abuse, or do nothing at all if the evidence
is insufficient.

A combination of Bloom filters to catch short-term dupli-
cates and timestamps to catch stored and replayed packets
prevents replay attacks on both timescales. Not only can a
malicious sender send traffic (that congests links, although
it may not reach the receiver) until its certificate is revoked
(which happens on a relatively long timescale), any node that
observes packets from S to R can resend them to R. This
duplication could cause a compliant sender to appear abu-
sive. The network will need to filter duplicate packets, so
that (1) links do not come under attack, and (2) innocent
senders are not blamed for duplicated traffic. We make use
of Passport’s mechanism to prevent replay attacks by routers
along the path. Routers use Bloom filters to catch short-term
duplication, and fast rekeying of inter-ISP Passport keys, via
hash chains, to prevent duplication across longer time scales.
Bloom filters are refreshed when the keys are, to allow for
smaller filters and reduce false positives. Timestamps pre-
vent forgeries within an ISP. If hosts S and K share an ISP
Py, K could record S’s packets and replay them, which might
cause certg to be blocked, unless P; checks the timestamp.

This scheme has several attractive properties. Certificates
are checked close to the source, allowing packets with bad
certificates to be filtered before wasting additional network
resources. The destination performs signature verification
only for new certificates: the hash of g* is required in
the packet to make subsequent verifications fast. ISPs can

S ISP+ ISP, ISP, R
pkt —» — —
< Jd
pkt, » pki, > > >
h(pkt, g°) h(pkt, g°),
Passport

Figure 2: When § wants to send to R, and S’s ISP does not
support accountability, S must find the first ISP on the path
to R that does, ISP;. ISP; then verifies S’s signatures and
inserts Passports.

permit anything signed by a known-good certificate while
blocking known-bad ones without having to block an entire
neighboring ISP. This is the purpose of including certificates
in packets. Each ISP need only store a few shared Passport
keys; these can likely be cached for a long period of time,
saving computation costs.

The space required in each packet is significant, but not
prohibitively large. The certificate occupies most of the
space: elliptic curve public keys can be represented in 41
bytes and signatures in 40 [10]. The timestamp requires four
bytes. Passports consume the rest: assuming 64-bit hash
function output and 2-byte AS numbers, and that most Inter-
net paths traverse no more than four ISPs [16], they require
(4+1)(8+2) =50 bytes. Because Passports cannot trace
fragmented packets, we do not allow fragmentation.

To permit a sender in an ISP that does not support ac-
countability to contact a receiver that requires accountability
demands special attention for incremental deployability. As
we show in Figure 2, S can first send a message with no
accountability toward the destination, requesting the public
key of the first ISP through which accountable messages can
be routed. The first ISP, P;, that implements this scheme (per-
haps S’s own ISP) returns its public key. S then requests P;
to act as its “first-hop accountability service” (to check certg
and add the Passport hashes into the packet).

Accountability may be proxied (and thus used in overlay
networks). S can request that entity S’ act as a proxy for S,
then arrange a shared key k' with the ISP of §’ and give '
the accountability information that it needs to send packets
through its ISP: g*, certs, and h(pkt,ts, certs, k). ISPs may
have incentive to offer accountability services to their cus-
tomers as it would eliminate the necessary proxying and re-
duce accountability request messages. Also, peering agree-
ments would influence ISPs; if an ISP is forced to do ex-
cessive proxying for its customer ISP, for example, it could
impose penalties as defined in a service-level agreement.

4.3 Bootstrapping Accountability

Since an accountability server must receive packets that lack
accountability identifiers, when clients request keys, it can-
not rely on accountability to discourage abuse. If it is at-
tacked, blocking all unaccountable traffic would render it
useless. To solve this problem, we rely on traditional pro-
tective measures. First, an accountability service should be
distributed and well provisioned. Second, its servers can
be localized and firewalled, so that a dedicated server han-



dles requests for nearby ISPs only. Third, ISPs could be
accountable for the traffic their customers send to account-
ability servers only, perhaps by placing their own identifiers
on (possibly sanitized) requests to white-listed accountabil-
ity servers.

ISPs might choose never to allow unaccountable traffic
to exit the network. Such a policy would be expected from
“free” or municipal wireless networks, who would want to
provide connectivity, but not to be responsible for tracking
users’ activities. Such ISPs could allow access to white-
listed accountability servers, run their own accountability
services that provide basic identifiers to traverse their net-
work, or proxy (and sanitize) accountability-setup requests
to accountability servers.

4.4 The Accountability Fault

A router or firewall may receive a packet that lacks the
“right” credentials. For example, the receiver might not sup-
port the accountability service the sender uses. We term
such events accountability faults, alluding to the idea of page
faults in virtual memory systems.

An accountability fault will result in a discarded packet,
and may also generate an error message back to the source.
This message is a reminder of which accountability services
the receiver accepts; the sender can retransmit with a service
the receiver supports. Accountability fault messages may
also be used as a type of pushback [17] message; interme-
diate routers, upon receiving such a message, may discard
messages that lack proper credentials or generate account-
ability fault messages of their own.

5 Who is Accountable?

Malicious traffic may be caused by a bug (the implementor is
at fault), misconfiguration (the administrator), or abuse (the
user): who “vouches for” the traffic? We believe the fol-
lowing rule of thumb applies: if an implementor believes his
software or device cannot be abused, he may accept respon-
sibility; else, if the application has no user, it is the adminis-
trator; else, it is the user.

Allowing the implementor to be accountable enables em-
bedded devices to send accountable traffic even when they
cannot acquire user-specific identifiers. The accountability
services providing access to those devices would likely not
be trusted by many destinations, if it was likely that the em-
bedded devices can be hacked or implemented poorly [7].
For devices with too little power to provide accountability
at all, a nearby relay or NAT may assume responsibility
for (and check) the traffic they generate (receive). Today’s
model of network location as identity can be expressed.

To allow the user to act as a principal requires that oper-
ating systems ensure that each user’s keys are isolated, that
the same keys are used for the same destinations (preserving
some anonymity), and that applications can use the user’s
keys. Pushing accountability to the end station requires con-
scious involvement of the user to decide how much personal
information to disclose and how accountable incoming traf-
fic must be. A user agent may aid this process by manag-

ing keys and preferences for identity disclosure to different
servers.

A compromised endhost may be forced to account for ma-
licious traffic. We believe that users are responsible for se-
curing their machines, and that it is reasonable to isolate
compromised hosts until they are cleansed. This isolation
can be facilitated by accountability services, which can deny
identifiers to a compromised machine even when its ISP
takes no action. We expect that vendors of anti-virus and in-
trusion prevention software might provide a type of account-
ability service in which their clients would prove active use
of current software as part of earning access. Such bundled
intrusion prevention software may detect (signed, account-
able) probes and report infection to an accountability service
to isolate other compromised machines.

The direct implementation on received traffic may mirror
a firewall policy in which the rules do not “accept” or “deny”
all traffic to a port, but “accept if accountable.” Hosts may
use a function like getpeername () to collect the identifier
associated with the remote endpoint and log accesses or re-
sponses.

6 Discussion

In this paper, we argue for accountability as a first-class net-
work service, separate from routing and addressing. We be-
lieve that balancing the needs of anonymity and accountabil-
ity should be the role of organizations that can make rea-
soned (and public) decisions about how and why to divulge
the identity of a message sender.

Separating accountability from routing can foster new net-
work services. The potential offered by anonymous network
transmission [6, 13, 20] and the compromise to accountabil-
ity required to use overlay networks [1, 21, 26] advance the
need for accountability as a first-class network service. Rich
overlay services are likely targets of abuse [19], and domain-
level or IP traceback techniques that would point the finger
at a specific host would only penalize overlay participants.
Overlay packet forwarding for anonymity and performance
can be permitted more easily when members of the overlay
need not vouch for the traffic of their peers.

We do not address other facets of accountability in the
network, for example, users assigning blame for poor per-
formance to a specific provider or content providers hold-
ing users accountable for infringement. Separating routing
from accountability may aid the deployment of source rout-
ing techniques that may make network service more compet-
itive [5, 29]. We focus on partially-anonymous clients, but
our model may be extended to contact partially-anonymous
services through, for example, i3 [25].

We cannot predict the ecology of accountability services.
They may be large or small, many or few, interested in pro-
tecting clients or in protecting servers. The resulting network
may prioritize “more” accountable traffic over less. Some
accountability services may be designed to supplant some
uses of VPNs. The cost of such services may be expen-
sive at first and be eventually subsidized (by advertising or



by services for whom accountability provides relief from at-
tacks) or made free like email. Whether content providers or
consumers are more likely to fund accountability services is
unclear, as services act on behalf of both.

The social cost of accountability choice may be high in
that the demands of service providers may reduce every
user’s expectation of anonymity, as cookies and targeted ad-
vertising do today. Attacks may encourage servers to re-
quire greater accountability in received packets. Some com-
munication might be prevented: those unwilling to present
sufficiently-identifying information might be unable to con-
nect.

We expect that services with strong accountability re-
quirements, customers that require protection for access
links, and recent victims of denial of service attacks would
drive early deployment. Accountability as a service can
be useful with only one accountability-literate client, one
accountability-dependent server, and one accountability ser-
vice providing keys. Restated, this accountability architec-
ture does not require global deployment to be effective. With
accountability support in hosts and client-side NATS, net-
works could optimize by filtering closer to attack sources
and accountability services could provide identities to more
clients and servers. With sufficient deployment that account-
ability information replaces source addresses in logs, over-
lays and free wireless networks could carry traffic without
enforcing acceptable usage policies.

In the Internet, ISPs can try to sanitize and filter bad
traffic, but they are constrained in collaborating to prevent
it [14]. We believe that it is in an ISP’s interest to carry traf-
fic “vouched for” by third parties because it may reduce their
liability for misbehavior and their need to locally account
for sent traffic. This is in contrast with deploying ingress
or egress filtering—practices that are likely to make the ISP
more accountable for bad traffic emanating from within, as
identifying the ISP becomes easy while identifying a user re-
mains difficult. By consistently defining verifiably account-
able traffic and allowing endpoints to define end-to-end ac-
countability requirements, the task of preventing misbehav-
ior in the network might be made tractable.

References

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient overlay networks. In ACM SOSP, 2001.

[2] K. Argyraki and D. R. Cheriton. Active Internet traffic fil-
tering: Real-time response to denial-of-service attacks. In
USENIX Annual Technical Conference, 2005.

[3] S. M. Bellovin, M. Leech, and T. Taylor. ICMP traceback
messages. Internet Draft: draft-ietf-itrace-04, 2003.

[4] M. Casado, et al. Cookies along trust-boundaries: Accurate
and deployable flood protection. In USENIX SRUTI, 2006.

[5] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden.
Tussle in cyberspace: defining tomorrow’s Internet. In ACM
SIGCOMM, 2002.

[6] L Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. In Int’l Workshop on Design Issues in Anonymity
and Unobservability, 2000.

[7] R. Clayton. The rising tide: DDoS from defective designs
and defaults. In USENIX SRUTI, 2006.

(8]

(9]

(10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]

(21]

(22]

(23]
[24]

[25]
[26]

[27]

(28]

[29]
(30]
(31]

W. Diffie and M. E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644—
654, 1976.

D. L. Donoho, et al. Multiscale stepping-stone detection. In
Fifth International Symposium on Recent Advances in Intru-
sion Detection, 2002.

E. C. Efstathiou, P. A. Frangoudis, , and G. C. Polyzos. Stim-
ulating participation in wireless community networks. In
IEEE INFOCOM, 2006.

P. Ferguson and D. Senie. Network ingress filtering. IETF
RFC-2827, 2000.

P. Francis and R. Gummadi. IPNL: A NAT-extended Internet
architecture. In ACM SIGCOMM, 2001.

D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2), 1999.

S. C. Lee and C. Shields. Tracing the source of network at-
tack: A technical, legal, and societal problem. In IEEE Work-
shop on Information Assurance and Security, 2001.

X. Liu, X. Yang, D. Wetherall, and T. Anderson. Efficient
and secure source authentication with packet passports. In
USENIX SRUTI, 2006.

D. Magoni and J.-J. Pansiot. Analysis of the autonomous
system network topology. ACM CCR, 31(3):26-37, 2001.

R. Mahajan, et al. Controlling high-bandwidth aggregates in
the network. ACM CCR, 32(3):62-73, 2002.

MAPS. http://www.mail-abuse.com/.

V. S. Pai, et al. The dark side of the web: An open proxy’s
view. In ACM HotNets, 2003.

M. K. Reiter and A. D. Rubin. Anonymous Web transac-
tions with crowds. Communications of the ACM, 42(2):32—
48, 1999.

S. Savage, et al. The end-to-end effects of Internet path se-
lection. In ACM SIGCOMM, 1999.

D. R. Simon, S. Agarwal, and D. A. Maltz. AS-based ac-
countability as a cost-effective DDoS defense. In USENIX
HotBots, 2007.

A. C. Snoeren, et al. Hash-based IP traceback. In ACM SIG-
COMM, 2001.

S. Staniford-Chen and L. T. Heberlein. Holding intruders
accountable on the Internet. In IEEE Symposium on Security
and Privacy, 1995.

I. Stoica, et al. Internet indirection infrastructure. In ACM
SIGCOMM, 2002.

L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: Offering internet QoS using overlays. In ACM
HotNets, 2002.

M. W. Wong and W. Schlitt. Sender policy framework (SPF)
for authorizing use of domains in e-mail. IETF RFC-4408,
2006. Experimental.

A. Yaar, A. Perrig, and D. Song. Pi: A path identification
mechanism to defend against DDoS attacks. In IEEE Sympo-
sium on Security and Privacy, 2003.

X. Yang. NIRA: A new Internet routing architecture. In ACM
SIGCOMM FDNA Workshop, 2003.

X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. In ACM SIGCOMM, 2005.

Y. Zhang and V. Paxson. Detecting stepping stones. In 9th
USENIX Security Symposium, 2000.



