
Scooping the Loop Snooper

Written by: Geoffrey K. Pullum

A proof that the Halting Problem is undecidable



No perfect procedure  
for bug checks will do 

 
No I won’t just assert it,  

I’ll prove it to you 
I will prove that although you  

might work til you drop 
 

You cannot tell if comp-u-ta-tion will stop



P

For imagine we have a procedure called P  

That for specified input permits you to see  

Whether specified source code, with all of its faults,  

Defines a routine that e-vent-ually halts.



You feed in your program, with suitable data,  

And P gets to work, and a little bit lata  
In finite compute time correctly infers  

Whether infinite looping behavior occurs.



But if it detects an unstoppable loop, 
then P reports Bad! and you’re in the soup.

If there is no looping, then P prints out Good 
That means on this input it halts, as it should.  



Well, the truth is that P cannot possibly be, 
 

Because if you wrote it and gave it to me, 
 

I could use it to set up a logical bind 
 

That would shatter your reason and 
scramble your mind.  



Here’s the trick that I’ll use and it’s simple to do.  

I’ll define a procedure, which I will call Q, 

That will use P’s predictions of halting success  

To stir up a terrible logical mess.

Q Q



For a specified program, say A, one supplies, 
 

The first step of this program called Q I devise 
 

Is to find out from P what’s the right thing to say 
 

Of the looping behavior of A run on A.

A A

Q



If the answer is Bad Q will suddenly stop. 

But otherwise, Q will go back to the top, 

And start off again, looping endlessly back, 

Till the universe dies… 



…and turns frozen and black.



And this program called Q  
wouldn’t stay on the shelf;  

I would ask it to forecast its run on itself. 

When it reads its own source code,  
just what will it do? 

What’s the looping behavior of Q run on Q?

Q

Q



If P warns of loops then Q has to quit; 
Yet P is supposed to speak truly of it!  

And if Q’s going to quit, then P should say Good!  
Which makes Q start to loop! – P denied that it would!

Q



No matter how P might perform, Q will scoop it: 
Q uses P’s output to make P look stupid.  

Whatever P says, it cannot predict Q: 
P is right when it’s wrong, and is false when it’s true!



I’ve created a paradox,  
neat as can be 

 
And simply by using your putative P. When you posited P you  

stepped into a snare; 

Your assumption has led  
you right into my lair.



So where can this argument possibly go?  

I don’t have to tell you;  
I’m sure you must know.

We now know there cannot possibly be  

A procedure that acts like the mythical P.

PDanger: 

M
ythical



So you can’t ever find a mechanical means  

For predicting the acts of computing machines; 

It’s something that cannot be done. So we users 

Must find our own bugs. Our computers are losers!



Now I know that HALT can’t be done 

This is an arg-ue-ment that you have won 

But what of the problems that I care about 

They can be solved fast,  
of that there’s no doubt


