Scalable and precise abstractions of programs for
trustworthy software

Matthew Might David Van Horn
University of Utah University of Maryland

March 9, 2015

Abstract

This document gives an overview of the Scalable and precise abstractions of programs
for trustworthy software project which was supported by the DARPA Information Innovation
Office, Automated Program Analysis for Cybersecurity program.

1 Executive summary

Motivation. Applications deployed on mobile devices play a critical role in the fabric of national
cyberinfrastructure. They carry sensitive data and have capabilities with significant social and
financial effect. Yet while it is paramount that such software is trustworthy, these applications
pose challenges beyond the reach of current practice for low-cost, high-assurance verification and
analysis. These programs are large, modular, and interactive. They communicate with distributed
services that are fundamentally unavailable for analysis. They are written in expressive high-level,
higher-order programming languages, for which traditional “Fortran-style” approaches to analysis
simply do not apply.

Completed work. We investigated a systematic and scalable approach to the fully automatic
analysis and verification of applications deployed on mobile devices.

Technical keystone. To make program analysis for cybersecurity economically feasible, scal-
ability and precision must both improve by orders of magnitude. We conjectured scalability and
precision—often seen as competing concerns—are inseparable instances of the same problem.
Based on recent work [I4], we hypothesized that to significantly improve scalability, precision
must be increased to such a degree that swaths of false-positive analytic state-space are eliminated.

Thrusts. With the goal of substantially elevating precision (and speed) in static analysis, we
proposed the following novel, transformative techniques:

1. A method for the systematic abstraction of object-oriented languages. Van Horn and Might’s
systematic abstraction [173, 3, 8] exposes the full inventory of parameters to tune the pre-
cision of a static analysis. These parameters induce an analytic framework that spans a

continuum from the null analysis up to the concrete semantics, with intermediate points that
include classical data-flow analysis; rich abstract interpretations; and symbolic execution.

2. A family of locally non-monotonic techniques for abstract transfer functions. We propose
“locally non-monotonic transfer functions,” and argue that they are essential to reducing false
positives. Locally non-monotonic analyses can revoke judgments made across transition
between states, thereby avoiding the inevitabe merging that creates false positives. Global
monotonicity still guarantees termination.

3. A mobile contract infrastructure for Java, with corresponding higher-order generalizations
of relational abstract domains. Contracts are executable specifications that sit at the bound-
ary between software components. Contracts are a run-time enforcement mechanism, but
our approach will leverage contracts as symbolic values for compile-time symbolic exe-
cution. By carrying out symbolic execution with contracts, we can verify rich behavioral
properties with minimal false-positives. A higher-order generalization of relational abstract
domains—entangled abstract domains—will enable us to conduct such symbolic execution.

‘suoryedridde eae o[IqOW AINIAS I0J SANDIUYDA] SISATRUR J1]]S PIOURAPY :9ANMqO

"A[[BO13R1S SI0RIIUO0D AJLINDDS 9II0JUD 0} SISATeur d1oquIAS sorddy saapsod asof buraval)

‘uois1oa1d Aressaoauun aABd[d 0] Suruapim onstunlroddo sojesnsaAu] e
"uoIsta1d /own soueeqoine 0} Surured[-soueLIeAA[od [ewndo sajqeuy e
‘sogengue[pajusLIO-103[qO 0} SISATeue MO[J-wIn}al umopysnd SpuslIxy e
*$309[q0 10J surewop joeIisqe po[3ueiud, siojdop pue sdopad(e
*S9SSAIPPE PIZIPOUER IM W[qo.Id UOIIRZI[BIIUL P[AL-[[NU SOAJOSIY e

*U0IS109.1d J10J SPOI9UW JIUOJOUOW-UOU A[[BO0] JO ARLIE UR SISIAD(]
:SISATeUR A]LIN03S pajewIolne Ul uoisald pue s

"BAR[UI S109[q0 0] U01109[[00 93eqIes joeIisqe sLojdop pue sydepy e 110q 01 STUS WA SPMIUZEW-JO-10PIQ) :[E0S)

suorjeAouuy 1oedu]y

“poyiowt dals-[[euls Jo asn 0} anp apod [o[eled YIM A[JUSISYUI SYIOM o uorspaLg) uorsarg

*sonbruya] 9AN}OJI SUIPN[OUL “BAR [PIIILIISIIUN ‘[[Nf S[PUBY 0} SIS o

"poads Suraoaduur 10y uondo se uado uoners[adde paseq-nNdx) sdooy|
"UOIIRIUSLIO-103[(0 0] SISATeUR [RUONOUN] WOL) SUOdRIM 101098, SLIO o
MIomawrey ondreue dojs-[[ews [euonpenuou ‘nyemod sjofdxy o
"wed) 9} A PaI2AOISIP POYIOUW UONORIISR JJBUWIDISAS SOSRIDAIT e
*AJ1INO9S WID]SAS 90.I0JUS 0] SIORIIU0D AJLINODS dIBMIJOS J1JR]S SIZI[II() © Jutod eono ueeozo\a.és Aol

‘uoneIoqe[[0d 1edw-ySIy SAISUIIXS YIIM WEd) PIYSIW-[[oM SISe3uy e uor3e1 [eorxopeaed, ST 0} §53008 UTES 0] PR SAIND 1809

uo1sa1d 0] paads Funyul] sisaylodAY sanjeULIOjSURI] T0[dXD 0] S0 e uoIs1a1d-owr} 9y} 3dnIsIp 03 A}101U0}0UOUI-UOU [€d0] JOo[dXH

$10adsy anbrun QUOISAIY] [eIIUYII],

91eMJOS AYLIOMISNL], I0J SWRIZ0Id JO SUOLORIISQY 9SIdaI] ‘O[qe[edS

2 Goals and Impact

Our primary goal is to enable sound, secure, automatic program analysis for the elimination of
security vulnerabilities in mobile applications written in high-level programming languages.

Toward this goal, we aim for simultaneous orders-of-magnitude improvements over state-of-the
art in the scalability and precision of static analysis. The differentiating keystone of our technical
strategy is to assault scalability through increased precision. Conventional wisdom in the field
holds that precision comes only at the cost of additional analysis time:

Time

Precision

The argument goes that increasing context-sensitivity—allocating more abstract variants of con-
crete addresses to boost polyvariance—will increase the size of the abstract state-space, and there-
fore, the worst case (and, in practice, the actual) analysis time.

Though linked, context-sensitivity is not the same as precision.

The leveragable hypothesis of our proposed effort is that cracks in the conventional wisdom on
static analysis can and will be pried open. Early cracks such as Wright and Jagannathan’s work on
polymorphic analysis showed analysis time can fall even as precision (and worst-case complexity)
increase [20]. The message of that work was clear: it is not the number of contexts that matter—it
is when they’re allocated (and just as critically, when they are not). Co-PI Van Horn extended this
understanding by proving that Shivers’ venerable context-sensitive £-CFA [I6] occupies a point
in the design space that runs in exponential time, yet can only learn a polynomial number of true
facts about a program [, [['/]. In other words, k-CFA is hard and imprecise; it spends its time
computing junk. A more recent crack—PI Might’s work on abstract garbage collection—makes
more efficient use of any finite set of contexts under any allocation strategy, yielding simultaneous
order-of-magnitude improvements in both time and precision [T4].

Extrapolating from these points, we argue that there is a region, in which locally non-monotonic
methods are employed, where more precision cleaves so much false positive state-space and spu-
rious rediscovery that analysis time falls:

locally non-monotonic critical point

/

Time

Precision

Locally non-monotonic methods, of which abstract garbage collection is an instance, allow con-
tractionary change to the abstract store under transition, while global monotonicity guarantees
termination. Under this “best of both words” scenario, an analyzer can soundly revoke prior judg-
ments, rather than enforcing them as eternal invariants. Revoking judgements diminishes the merg-
ing that generates false positives.

3 Publications

This project has yielded several publications [19, 5, 15, [T, 9, 10, 12, [Z, 8, &, 4, 1].

References

[1] Thomas Gilray and Matthew Might. A unified approach to polyvariance in abstract inter-
pretations. In Proceedings of the 2013 Workshop on Scheme and Functional Programming,
November 2013.

[2] David Van Horn and Harry G. Mairson. Deciding £CFA is complete for EXPTIME. In
ICFP °08: Proceeding of the 13th ACM SIGPLAN International Conference on Functional
Programming, pages 275-282, 2008. ISBN 9781-595-9391-9-7.

[3] David Van Horn and Matthew Might. Abstracting abstract machines. In ICFP ’10: Pro-
ceedings of the 15th ACM SIGPLAN International Conference on Functional Programming,
ICFP °10, pages 51-62, September 2010. ISBN 9781-605-5879-4-3.

[4] Maria Jenkins, Leif Andersen, Thomas Gilray, and Matthew Might. Concrete and abstract
interpretation: Better together. In Proceedings of the 2014 Workshop on Scheme and Func-
tional Programming, November 2014.

[5] J. Ian Johnson, Nicholas Labich, Matthew Might, and David Van Horn. Optimizing abstract
abstract machines. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP *13, pages 443-454, 2013. ISBN 9781-450-3232-6-0.

[6] J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might, and David Van Horn. Push-
down flow analysis with abstract garbage collection. Journal of Functional Programming,
24:218-283, May 2014. ISSN 1469-7653.

[7] Shuying Liang, Andrew W. Keep, Matthew Might, Steven Lyde, Thomas Gilray, Petey Al-
dous, and David Van Horn. Sound and precise malware analysis for android via pushdown
reachability and entry-point saturation. In Proceedings of the Third ACM Workshop on Se-
curity and Privacy in Smartphones & Mobile Devices, SPSM ’13, pages 21-32, 2013.
ISBN 9781-450-3249-1-5.

[8] Shuying Liang, Matthew Might, and David Van Horn. AnaDroid: Malware analysis of an-
droid with User-Supplied predicates. In Proceedings of Tools for Automatic Program Analy-
sis, June 2013.

[9] Shuying Liang, Weibin Sun, Matthew Might, Andrew Keep, and David Van Horn. Pruning,
pushdown Exception-Flow analysis. In Source Code Analysis and Manipulation (SCAM),
2014 IEEE 14th International Working Conference on, pages 265-274, 2014.

[10] Steven Lyde and Matthew Might. Environment unrolling. In Workshop on Higher-Order
Program Analysis, July 2014.

[11] Steven Lyde and Matthew Might. Strong function call. In Workshop on Higher-Order Pro-
gram Analysis, July 2014.

[12] Steven Lyde, Thomas Gilray, and Matthew Might. A linear encoding of pushdown Control-
Flow analysis. In Proceedings of the 2014 Workshop on Scheme and Functional Program-
ming, November 2014.

[13] Matthew Might. Abstract interpreters for free. In SAS 2010: Proceedings of the 17th
Static Analysis Symposium, SAS’10, pages 407-421, 2010. ISBN 3-642-15768-8, 978-3-
642-15768-4.

[14] Matthew Might and Olin Shivers. Exploiting reachability and cardinality in higher-order flow
analysis. Journal of Functional Programming, 18(Special Double Issue 5-6):821-864, 2008.

[15] Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave
Clarke, and Frank Piessens. Monadic abstract interpreters. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 399—
410, June 2013.

[16] Olin G. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, 1991.

[17] David Van Horn. The Complexity of Flow Analysis in Higher-Order Languages. PhD thesis,
Brandeis University, August 2009.

[18] David Van Horn and Matthew Might. Abstracting abstract machines: a systematic approach
to higher-order program analysis. Communications of the ACM, 54:101-109, September
2011. ISSN 0001-0782.

[19] David Van Horn and Matthew Might. Systematic abstraction of abstract machines. Journal
of Functional Programming, 22(Special Issue 4-5):705-746, 2012.

[20] Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: An effective polyvariant
flow analysis. ACM Transactions on Programming Languages and Systems, 20(1):166-207,
January 1998. ISSN 0164-0925.

	Executive summary
	Goals and Impact
	Publications

