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Abstract

This document gives an overview of the Scalable and precise abstractions of programs
for trustworthy software project which was supported by the DARPA Information Innovation
Office, Automated Program Analysis for Cybersecurity program.

1 Executive summary

Motivation. Applications deployed on mobile devices play a critical role in the fabric of national
cyberinfrastructure. They carry sensitive data and have capabilities with significant social and
financial effect. Yet while it is paramount that such software is trustworthy, these applications
pose challenges beyond the reach of current practice for low-cost, high-assurance verification and
analysis. These programs are large, modular, and interactive. They communicate with distributed
services that are fundamentally unavailable for analysis. They are written in expressive high-level,
higher-order programming languages, for which traditional “Fortran-style” approaches to analysis
simply do not apply.

Completed work. We investigated a systematic and scalable approach to the fully automatic
analysis and verification of applications deployed on mobile devices.

Technical keystone. To make program analysis for cybersecurity economically feasible, scal-
ability and precision must both improve by orders of magnitude. We conjectured scalability and
precision—often seen as competing concerns—are inseparable instances of the same problem.
Based on recent work [I4], we hypothesized that to significantly improve scalability, precision
must be increased to such a degree that swaths of false-positive analytic state-space are eliminated.

Thrusts. With the goal of substantially elevating precision (and speed) in static analysis, we
proposed the following novel, transformative techniques:

1. A method for the systematic abstraction of object-oriented languages. Van Horn and Might’s
systematic abstraction [173, 3, 8] exposes the full inventory of parameters to tune the pre-
cision of a static analysis. These parameters induce an analytic framework that spans a



continuum from the null analysis up to the concrete semantics, with intermediate points that
include classical data-flow analysis; rich abstract interpretations; and symbolic execution.

2. A family of locally non-monotonic techniques for abstract transfer functions. We propose
“locally non-monotonic transfer functions,” and argue that they are essential to reducing false
positives. Locally non-monotonic analyses can revoke judgments made across transition
between states, thereby avoiding the inevitabe merging that creates false positives. Global
monotonicity still guarantees termination.

3. A mobile contract infrastructure for Java, with corresponding higher-order generalizations
of relational abstract domains. Contracts are executable specifications that sit at the bound-
ary between software components. Contracts are a run-time enforcement mechanism, but
our approach will leverage contracts as symbolic values for compile-time symbolic exe-
cution. By carrying out symbolic execution with contracts, we can verify rich behavioral
properties with minimal false-positives. A higher-order generalization of relational abstract
domains—entangled abstract domains—will enable us to conduct such symbolic execution.
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2 Goals and Impact

Our primary goal is to enable sound, secure, automatic program analysis for the elimination of
security vulnerabilities in mobile applications written in high-level programming languages.

Toward this goal, we aim for simultaneous orders-of-magnitude improvements over state-of-the
art in the scalability and precision of static analysis. The differentiating keystone of our technical
strategy is to assault scalability through increased precision. Conventional wisdom in the field
holds that precision comes only at the cost of additional analysis time:

Time

Precision

The argument goes that increasing context-sensitivity—allocating more abstract variants of con-
crete addresses to boost polyvariance—will increase the size of the abstract state-space, and there-
fore, the worst case (and, in practice, the actual) analysis time.

Though linked, context-sensitivity is not the same as precision.

The leveragable hypothesis of our proposed effort is that cracks in the conventional wisdom on
static analysis can and will be pried open. Early cracks such as Wright and Jagannathan’s work on
polymorphic analysis showed analysis time can fall even as precision (and worst-case complexity)
increase [20]. The message of that work was clear: it is not the number of contexts that matter—it
is when they’re allocated (and just as critically, when they are not). Co-PI Van Horn extended this
understanding by proving that Shivers’ venerable context-sensitive £-CFA [I6] occupies a point
in the design space that runs in exponential time, yet can only learn a polynomial number of true
facts about a program [, [['/]. In other words, k-CFA is hard and imprecise; it spends its time
computing junk. A more recent crack—PI Might’s work on abstract garbage collection—makes
more efficient use of any finite set of contexts under any allocation strategy, yielding simultaneous
order-of-magnitude improvements in both time and precision [T4].

Extrapolating from these points, we argue that there is a region, in which locally non-monotonic
methods are employed, where more precision cleaves so much false positive state-space and spu-
rious rediscovery that analysis time falls:



locally non-monotonic critical point

/

Time

Precision

Locally non-monotonic methods, of which abstract garbage collection is an instance, allow con-
tractionary change to the abstract store under transition, while global monotonicity guarantees
termination. Under this “best of both words” scenario, an analyzer can soundly revoke prior judg-
ments, rather than enforcing them as eternal invariants. Revoking judgements diminishes the merg-
ing that generates false positives.

3 Publications

This project has yielded several publications [19, 5, 15, [T, 9, 10, 12, [Z, 8, &, 4, 1].
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