

Evan Golub / Ben Bederson / Saul Greenb

Approaches: Experimental/Quantitative

Experimental

- study relations by manipulating one or more *independent* variables
 - experimenter controls all environmental factors
- observe effect on one or more *dependent* variables

Internal validity

• confidence that we have in our explanation of experimental results

Trade-off: Natural vs Experimental

• precision and direct control over experimental design

versus

• desire for maximum generalizability in real life situations

Evan Golub / Ben Bederson / Saul Greenberg

Reliability Concerns

Would the same results be achieved if the test were repeated?

Problem: individual differences:

- best user 10x faster than slowest
- best 25% of users \sim 2x faster than slowest 25%

Partial Solution

- reasonable number and range of users tested
- statistics provide confidence intervals of test results
 - -95% confident that mean time to perform task X is 4.5+/-0.2 minutes means
 - 95% chance true mean is between 4.3 and 4.7, 5% chance its outside that

Evan Golub / Ben Bederson / Saul Greenberg

Validity Concerns

Does the test measure something of relevance to usability of real products in real use outside of lab?

- Some typical validity problems of testing vs real use
 - non-typical users tested
 - tasks are not typical tasks
 - physical environment different
 - quiet lab -vs- very noisy open offices vs interruptions
 - social influences different
 - motivation towards experimenter vs motivation towards boss

Partial Solution

- use real users
- tasks from task-centered system design
- environment similar to real situation

Evan Golub / Ben Bederson / Saul Greenberg