Prototyping & Building a System

More Low-Fidelity Techniques

Medium Fidelity Techniques

Ways these can be used…

Designing Your System

Decide which users and tasks you will support.

• It might not be practical to design a system to support each and every task and/or user that you discovered in the previous stage.

• To start off you need to determine what is **needed** - talk to people, observe them, identify things that might be extraneous or optional, do a “literature review” to see what’s missing in the application ecosystem, etc.

You then iterate through the following three phases:

• User and Task generation and analysis.

• Form your ideas into designs.

• Create prototypes to have users try (on tasks you’ve developed).
Designing Your System

You need to determine how will things appear to the users!
• This is what the user first sees – it needs to invite use.

You’ll want to think about what each step through a given task will look like…
• There should be a natural work flow as the user accomplishes their task.

At some point you have a “final spec” that you want to implement as a final product.

Prototyping

THE PROTOTYPE IS DONE. COME TAKE A LOOK AT THE USER INTERFACE.

IT WORKS GREAT, BUT MAKE SURE THIS THING IS TOTALLY IDIOT-PROOF.

AGAIN?

Prototyping at different project stages...

<table>
<thead>
<tr>
<th>Early design</th>
<th>Late design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstorm different representations</td>
<td>Low fidelity paper prototypes</td>
</tr>
<tr>
<td>Choose a representation</td>
<td>Medium fidelity prototypes</td>
</tr>
<tr>
<td>Rough out interface style</td>
<td>High fidelity prototypes / restricted systems</td>
</tr>
<tr>
<td>Task centered walkthrough and redesign</td>
<td>Working systems</td>
</tr>
<tr>
<td>Fine tune interface, screen design</td>
<td>Alpha/Beta tests</td>
</tr>
<tr>
<td>Heuristic evaluation and redesign</td>
<td></td>
</tr>
<tr>
<td>Usability testing and redesign</td>
<td></td>
</tr>
<tr>
<td>Limited field testing</td>
<td></td>
</tr>
</tbody>
</table>

Walk through your design

Before you implement anything, evaluate via a low-fidelity prototype.

- Use the tasks examples you created to walk through your design to evaluate whether it will be usable.

For each scenario you have, go through accomplishing the described task step by step.

- Is the motivation clear at each step?
- Can you expect the user to know what to do at each step with the anticipated level of training?
Low fidelity prototypes

Paper-based prototypes
- a paper mock-up of the interface look, feel, functionality
- “quick and cheap” to prepare and modify

Purpose
- brainstorm competing representations
- elicit user reactions
- elicit user modifications / suggestions

Low fidelity prototypes: Sketches

Drawing of the outward appearance of the intended system.
- crudity means people concentrate on high level concepts
- but hard to envision a dialog’s progression

Generally not good to have too much typed! Should really be hand-drawn on paper.
Low fidelity prototypes: Iterate

To get a good idea, start by getting lots of ideas…

The “speed” of lo-fi prototypes makes it fundamentally easier to go through several iterations – each with feedback from users.

Low fidelity prototypes: Storyboarding

This can be done / thought of as a series of key frames.
– originally from film; used to get the idea of a scene
– can also be snapshots of the interface at particular points in the interaction

The users can evaluate quickly the direction the interface is heading before you write the first line of code!
Storyboard of using a new type of selfie app

Storyboard of an app to measure height of a structure

The user taps the button when they are at the base of the structure which records the GPS location and then they step back around a hundred feet.

The user gets the top of the structure dead center and tap the image to record the GPS location and the device’s tilt.

The user gets the bottom of the structure dead center and tap the image to record the GPS location and the device’s tilt.

The app uses math and science to calculate the approximate height of the structure! We can use trigonometry on the angles and GPS-based distance…
PICTIVE prototypes

“Plastic Interface for Collaborative Technology Initiatives through Video Exploration” - Muller, CHI 1991

• Design is multiple layers of sticky notes and plastic overlays
 – different sized stickies represent icons, menus, windows etc.
• Interaction demonstrated by manipulating notes
 – contents changed quickly by user/designer with pen and note repositioning
• Session can even be recorded for later analysis
 – usually end up with mess of paper and plastic!

PICTIVE prototypes

Can create pre-made interface components on paper using your GUI builder (though this can lock users into a certain initial mindset).

buttons
combo box
spinner
list box

menu
entries	
tabs

alert box

I would argue it is still better to hand-draw them…
Playtending
One form of the “original” Palm Pilot as “used” by Jeff Hawkins, carrying it around for months as if it was real to see how it needed to be designed.

See also, the Wii U Gamepad

Fail Fast
We’ve talked about low fidelity tools
• arts and crafts supplies
• hand-drawn mock-ups
• storyboards
• “screenshots” of widgets
• transparencies
• sticky notes

These allow for rapid iteration with little time or cost (or emotional attachment) and give the users the most freedom to suggest changes.

→ This is sometimes thought of as the “fail fast” stage.
Other uses of low fidelity prototypes

Tutorials and manuals

- write them in advance of the system being built
- tutorial for step by step description of an interaction
 - an interface “walk-through” with directions
- manual for reference of key concepts
 - in-depth technical description
- if highly visual, then a storyboard can be set within textual explanations of what the user should be doing

I’m told that people will even sometimes read through the manuals of competing products to check up on their interface, the functionality of the system, and how well these match up with tasks…
Low/Medium Hybrids

Photo-based sketches

Start with a photograph of a real space and sketch in the “new” thing you are working on.

More playtending…

Video “mock-ups in action” to analyze flow…

https://www.youtube.com/watch?v=x48qOA2Z_xQ
https://www.youtube.com/watch?v=-SOeMA3DUEs
Medium Fidelity

After a few rounds of low fidelity brainstorming and feedback, you move on to some form of medium fidelity prototype which is interactive and less rough.

- Wireframes/flowcharts for more formal planning
- Interactive mock-ups based on flowcharts
- Toolkits for realistic mock-ups
- Specs to get the size of things realistic
- Domain-specific tools
- More coding-centric tools
- Wizard of Oz
- Physical objects

These are not mutually exclusive things…

Medium fidelity prototypes

Wireframes/Flowcharts

- for more formal planning.
- can build interactive mock-ups based on flowcharts

Prototyping with a computer

- simulate or animate some but not all features of the intended system
 – engaging for end users

Purposes

- provide a sophisticated (limited) scenario for the user to try
- provide a development path towards functional system
- can test more subtle design issues
Some tools…
Software that allows you to prototype other software includes PowerPoint, InVision, MarvelApp, Moqups, Balsamiq, Javascript, Flash, Silverlight, HTML5, etc.

Physical realism is sometimes needed so you might want to get certain hardware specifications to have the actual size of things be accurate (resources such as http://screensiz.es/phone exist).

Some domain-specific tools exist, such as “Prototyping on Paper” for iOS (by Woomoo) and physical objects can be useful… cardboard, clay, vinyl, 3D designed/printed, etc.

“Dangers” of Medium Fidelity prototypes
Medium fidelity prototypes might take too long to build and might be hard to change.
• Reduces number of iterations

User’s reactions usually get “in the small” at this level.
• blinds people to major representational flaws

Developers might be more likely to resist changes.
• “but it is already working…”

A single bug can halt testing!

Management may think its real!!!
Medium fidelity prototypes

vertical prototypes
– includes in-depth functionality for only a few selected features
– common design ideas can be tested in depth

horizontal prototypes
– surface layers includes the entire user interface with no underlying functionality
– a simulation; no real work can be performed

scenario
– scripts of particular fixed uses of the system; no deviation allowed

Medium fidelity prototypes
Wizard of Oz - A method of testing a system, or a part of a system, that does not yet exist.

• human simulates the system’s intelligence and interacts with user
• uses real or mock interface
 – “Pay no attention to the man behind the curtain!”
• user uses computer as expected
• “wizard” (preferably hidden):
 – interprets subjects input according to an algorithm
 – has computer/screen behave in appropriate manner
 – might have errors artificially introduced
• good for:
 – adding simulated and complex vertical functionality
 – testing futuristic ideas
• ongoing research into WoO tools (SketchWizard, UISKEI, i2ME)
Wizard of Oz Examples (I)

IBM: an imperfect listening typewriter using continuous speech recognition
A secretary was trained to:
- understand key words as “commands”
- to type responses on screen as the system would
- manipulating graphic images through gesture and speech

Intelligent Agents / Programming by demonstration
• person trained to mimic “learning agent”
 - user provides examples of task they are trying to do
 - computer learns from them
• shows how people specify their tasks

In both cases, system very hard to implement, even harder to change!
Wizard of Oz Examples (II)

Imagine scenarios where you aren’t sure whether the investment is worth the ‘payout’ or you want to develop the technology while exploring interface ideas.

• You want to build a map system that shows where the user is in real-time. Rather than needing to install tracking systems before being able to do the UI testing, you could have a wizard watching the users and updating their location manually on the system.

• You want to have location-aware directional cues such as blinking lights or arrows or sound effects turn on and off as appropriate to guide a user to a destination. Again, you could have a wizard instruct the system to turn things on and off without having the proximity sensors installed or heuristics to determine the user’s directional orientation.

What you now know about…

Prototyping
• allows users to react to the design and suggest changes
• low-fidelity prototypes best for brainstorming and choosing representations
• medium-fidelity prototypes best for fine-tuning the design

Prototyping methods
• vertical, horizontal and scenario prototyping
• storyboarding
• Pictive
• scripted simulations
• Wizard of Oz
Reading for Journaling

https://dl.acm.org/citation.cfm?id=175288