COMPUTER SCIENCE
TECHNICAL REPORT

No. 92-14

Increasing the Efficiency of Vectorization Through the
Use of Multiple Sub-Zones with Automatically
Mutually Exclusive Nodes
A Case Study Through the Ising Problem

Evan B Golub
David M Arnow

BROOKLYN COLLEGE

Department of Computer and Information Science

Brooklyn College of C.U.N.Y.
Bedford Ave. and Ave. H
Brooklyn, New York 11210

1) Introduction

In parallelizing algorithms, care must be taken to guarantee that no two
processors will be updating a given variable at the same time. One technique
which is used, is doing work in secondary structures, and then combining partial
results at a later time. This adds the step of recombining the data. In this paper
we look at how the same ends can be accomplished without the use of secondary
workspace, but rather by logically restructuring the data to be worked on. The
results obtained show a decrease in the sequential code’s run time, which in turn

leads to a decrease in the parallel code’s run time.

The specific example used to demonstrate and compare these two
techniques is the Ising Problem. The empirical results were obtained by running
the code on an Alliant FX/8 with eight processing elements, each having thirty-

two vector processors, all accessing the same shared memory.

2) Presentation of the Basic Ising Problem

The "Ising" problem has been shown to be a good benchmark for testing
techniques in parallel programming. The problem consists of a multidimensional
matrix in which each cell can either lose or gain energy, to or from a
neighboring cell according to a specified set of rules. For this case, the matrix is
two dimensional, with the size of 128 x 64. The rules regarding the cells are as
follows. The corner cells have no energy value, and have no ability to gain or
lose energy. The wall cells have an unspecified, "infinite” amount of energy, and
can "lose" one energy unit per time unit to a neighboring cell. The interior cells
begin with no energy, but can gain energy from its neighbors. After it has

energy of its own, it can then give off its energy to any one of its neighbors.

A neighboring cell is defined as a cell which 1< adjacent. either horizontalh
or vertically. Cells which are diagonally adjacent arc not considered to be

neighboring cells.

Not a
Neighbor

Neighbor "ME” I. Neighbor
Not! a Not a
Neighbor Neighbor I Neighbor

At each "tick” of the clock. each cell performs 1ts own energy transfer

Not a

Neighbor Neighbor

L
L

instantaneously. This allows us to decide the energy transfers "before" the time
of transfer, and prevents dependencies between cells during the passing of a single
time unit. (During one time cycle, the entire matrix is updated according to the
energy transfers to and from each active cell.) The problem which does arise is
that a single interior (non-border) cell can be updated by up to four different
neighboring cells during one cycle. In order to have accurate results, it has to be
guaranteed that parallelizing the code will not lead to multiple actions on a single
cell at the same time. A straight forward method of accomplishing this would
be to have a mutual exclusion lock in place for each cell of the matrix. This
however leads to enormous overhead, the potential of severely serializing the
execution of the program, and eliminating the possibility of vectorization. The
two techniques which follow deal with the problem of working with these
interior cells in two very different manners. The first technique creates
secondary data structures to hold intermediate updates, and then merges them to
the matrix. The second technique logically restructures the matrix to guarantee
that no two updates can effect a given cell while being done in parallel.

3) Description of the First Method : Secondary Structures

In the first method which will be discussed. changes are not made directly
to the cells of the matrix. Instead. a second set of structures is created which will
hold four update values for each cell. These four cells represent how much
energy a given cell will give of to 1ts neighbors (up. down, left and right). As
each cell is "asked” how much energy 1t will release. and which neighbor it will
release it to, that information 1s saved in the appropriate update location in the
secondary structure and that amount of energy is removed from the cell being
“polled.”. Then, after the entire matrix has been "polled”. each cell's new value
is computed based on the original values and the secondary structures’

information.
*PR" Secondary Arrays

PR = "Potential Recipient”

I=Length of Matrix PR 1
PR 2[K] I
(K-1) PR 2

PR 3[K] . PR 1[K]
(K-1) K I' (K+1) PR 3

L
Bl

PR 4[K] I
(K+1) P..R 4

Recalculation : matrix(i) = matrix(i) + PR1(i+1) + PR2(i-I) + PR3(i-1) + PRA4(+])

A single line of code does this calculation for each cell, so there is no risk
of one cell being updated by multiple instructions at the same time when the code
is parallelized. This method is quite effect}ve, however, there is an added loop
where the cells' new values are calculated based upon the information in the
secondary structures. This is where the motivation for the second method came

from.

4) Description of the Second Method : Logical Restructuring

The motivation for the second method which will be discussed was to
attempt to eliminate the need of an additional loop to merge all of the update
information and recalculate the matrix values. The solution was to have each cell
updated as the energy transfer decisions were made. The problem with this arises
when the code is parallelized, and a given cell could be in the process of being
updated by up to four neighboring cells. To overcome this problem. the matrix
was logically restructured into eight zones. Two of these zones equally divide the
wall cells, and the remaining six zones equally divide the interior cells. These
zones are organized in a way in which no cell in a given zone can be effected by

energy transfers made by any other cell in that zone.

A1 e o])
A NN [N N | R N N
L2 Jle JL7 8 e J7 (8]
L2 I 3 A 513 14 F
L2 Je 17 e 17 1
(2 03 14 s)3 e 105]
L2 Lo JL7 J3 e L7 J(8
HEAN 1R | N (N N
A N | O Y O I
(2]

(2]

B EREEEEEH

OO oo

Each of the six zones need to be computed serially, (eg:Zone2,, Zone7),
but the cells within each zone can be computed in parallel. This eliminates the
need for the secondary structure for updates, and therefore the need for the extra
loop to recombine the information on updates. It can appear that serializing the

4

six zones would serialize the code, but the only loss is the startup cost at the
beginning of each of the six zones. If the zones are large enough, which they are
in this case, then the effect is negligible.

5) Empirical Results

In order to fully compare these two techniques it was only necessary to
time the code which dealt with energy transfers of interior cells, where one
version would simulate energy transfers using Method #1 and the other using
Method #2. Both versions were run with the vector-concurrent flags turned off
and then on. In order to get accurate timing data, several procedures were
followed in the runs. Primarily, the only part of the code to be timed was the
altered procedure. However, since real time was being tested, and this can be
seriously effected by system utilization and other factors, all four versions of the
program were run simultaneously so that they would all be run under the same
set of circumstances. Additionally, 20 repeated trials were run and averaged

together in order to get a fair representation.

The following is the accumulated data.

Method#1 : Sequential 78.0957 seconds
Method #2 : Sequential 74.0009 seconds
Method #1 : Parallel 7.4779 seconds
Method #2 : Parallel 6.8599 seconds
Speed-up for Method #1 from Sequential to Parallel : 10.4435
Speed-up for Method #2 from Sequential to Parallel : 10.7875
Speed-up for Sequential runs of Method #2 over Method #1 : 1.0552
Speed-up for Parallel runs of Method #2 over Method #1 : 1.0901

Of the above numbers, the most relevant one to the original premise for
creating the second method is the speed-up of the parallelized run of Method #2
over Method #1. The speed-up is approximately 9%.

6) Conclusions

As shown by the empirical results, the primary difference between these
two methods is that the sequential code is reduced by eliminating the need for a
loop to merge update data. While in this case the relative amount of time spent in
this loop is small, it is possible to imagine situations where the time utilized for
merging secondary structures’ data into the primary matrix is a substantial part
of the work done. In these situations, creating a logical restructuring by
observing the traits of the matrix to be operated upon could lead to significant
speed-up of the serial code, and in turn, of the parallel code. The use of visual
representations is helpful in this process, but it could be possible to automate the
procedure by writing a program to evaluate and find the proper zones for a given

situation.

Appendix A-1 : No Sub-Zones In Use (Secondary Storage Matrix Used Instead)

SUBROUTINE SIMULATE
IJLIM = 128%*64
NRAN=5

DO 20 IJ=1,IJLIM
NEW(IJ, 1)
NEW(IJ,2)
NEW(IJ, 3)
NEW(IJ, 4)

20 CONTINUE

o
[eNoNoNe)

NRAN=NRAN-1

CVD$L NODEPCHK
DO 70 IJ=1,IJLIM
N = 0.5 + RNS(NRAN+IJ)*IGR(IJ,ICUR)
IGR(IJ,NEXT) = IGR(IJ,NEXT) - N
M=1.0 + (4.0-1.0e~-10) *RNS (NRAN+IJ+IJLIM)
NEW(IJ,M) = N
70 CONTINUE

NRAN=NRAN+IJLIM*2+1

DO 90 IJ=1,IJLIM

Nl =0

N2 =0

N3 =0

N4 =0

IF (IJ .LT. IJLIM) N1 = NEW(IJ+1,1)
IF (IJ .GT. 64) N2 = NEW(IJ-64,2)
IF (IJ .GT. 1) N3 = NEW(IJ-1, 3)

IF (IJ .LT. IJLIM-64) N4 NEW(IJ+64,4)
IGR(IJ,NEXT) = IGR(IJ,NEXT)+N1+N2+N3+N4
90 CONTINUE

END

Appendix A-2 : Sub-Zones In Use

SUBROUTINE SIMULATE
IJLIM = 128%*64
NRAN=5

CVDS$SL NOCONCUR
CVDSR NOSYNC
DO 5270 IOUTER=1,6
CVDSL CONCUR
DO 5279 IP0OS=1,1302
I=ISLOT (IOUTER, 1, IPOS)
J=ISLOT (IOUTER, 2, IPOS)
IJ=(J-1)*64 + I
N=0.5+RNS (NRAN+IPOS+1302* (IOUTER-1))

+ *IGR (IJ, ICUR)
M=1.0+(4.0-1.0e-10) *RNS (NRAN+7812+IP0S+1302
+ * (IOUTER-1))

IGR(IJ,NEXT)=IGR(IJ,NEXT)-N
II = I + IOFFSET (M)
JJ = J + JOFFSET (M)
ITIJJ=IJ+IOFFSET (M) +64*JOFFSET (M)
IF (.NOT.(II.LT.2.0R.II.GT.63.0R.JJ.LT.2.0R.JJ.GT.127))
+ IGR(ITIJJ,NEXT)=IGR(IIJJ,NEXT) +N
5279 CONTINUE
5270 CONTINUE

END

