
The Computational Complexity Column

by

Lance FORTNOW

NEC Research Institute

4 Independence Way, Princeton, NJ 08540, USA

fortnow@research.nj.nec.com

This has been quite an exciting summer for computational complexity. The 15th Conference

on Computational Complexity held July 4-7 in Florence was a great success. We had many inter-

esting talks and a wonderful invited talks and tutorials by Paul Beame, Luca Trevisan and Russell

Impagliazzo. Preparations are underway for the 16th Conference next summer in Chicago.

The Institute of Advanced Studies in Princeton had a three-week summer session on com-

putational complexity theory. This included a graduate school giving introductions to many of

the current exciting research areas in complexity theory. Lecturers included Sanjeev Arora, Paul

Beame, Michael Ben-Or, Oded Goldreich, Ran Raz, Steven Rudich, Luca Trevisan and Salil Vad-

han. The summer session is part of a 2000-2001 special year on computational complexity at the

institute.

Our column has a new web site: http://www.neci.nj.nec.com/homepages/fortnow/beatcs. Most

of the previous columns are available there as well as pointers to interesting complexity sites such

as described above.

This month we feature a survey on parallel sorting where we have a �xed number of rounds.

If you only have one round than all comparisons are needed. Surprisingly even for two rounds

computing the optimal number of rounds is a surprisingly diÆcult problem.

A Survey of Constant Time Parallel Sorting

William Gasarch1 Evan Golub2 Clyde Kruskal3

1 Introduction

It is well known that sorting can be done with O(n logn) comparisons. It is also known that (in

the comparison decision tree model) sorting requires
(n log n) comparisons.

What happens if you allow massive parallelism? In the extreme case you can sort n elements

in one round by using
�n
2

�
processors to make all the comparisons at once. It is easy to show

that sorting in one round requires
�n
2

�
processors. Can you sort in two rounds with a subquadratic

number of processors? What about k rounds? We survey the known literature.

1Dept. of C.S. and Inst. for Adv. Comp. Stud., University of MD., College Park, MD 20742, U.S.A. Supported

in part by NSF grant CCR{9732692. (Email: gasarch@cs.umd.edu.)
2Dept. of C.S., University of MD., College Park, MD 20742, U.S.A. (Email: egolub@acm.org.)
3Dept. of C.S., University of MD., College Park, MD 20742, U.S.A. Supported in part by NSF grant CCR{

9732692. (Email: kruskal@cs.umd.edu.)

We use the parallel decision tree model introduced by Valiant [22]. If p processors are used

then every node is a set of p comparisons and has p! children corresponding to all possible answers.

We think of a node as having information about how the comparisons that led to that node were

answered (formally a dag on fx1; : : : ; xng) and all information derivable from that information

(formally the transitive closure of that dag). The model does not count the cost of communication

between processors, nor does it count the cost of transitive closure. The model does capture how

hard it is to gather the information needed to sort. Also, lower bounds in our model will apply

to models that take these factors into account. For more realistic models of parallelism see any

current textbook on parallel algorithms, e.g. [1, 15].

The �rst round of a p-processor algorithm takes x1; : : : ; xn about which nothing is known and

makes p comparisons. This can be represented as an undirected graph G on n vertices with p

edges. Hence the search for parallel sorting algorithms will involve �nding graphs G that have nice

properties. Most of our algorithms depend on versions of the following two lemmas which we state

informally:

1. Some undirected graphs G with property P exists and does not have too many edges.

2. Let G = (V;E) be a graph with V = fx1; : : : ; xng that has property P . Let G0 be any acyclic

orientation of G and let H be the transitive closure of G0. The graph H is not too large.

2 De�nitions and Notation

There are several types of sorting algorithms.

De�nition 2.1

1. A nonconstructive algorithm for sorting n elements in k rounds is an algorithm that is proven

to exist, but its existence proof does not reveal how to produce it. For example, the graph

on n vertices that represents the �rst round may be proven to exist by the probabilistic

method [5, 20].

2. A constructive algorithm for sorting in k rounds is a sequence of algorithms An with the

following properties: (1) The algorithm An sorts n elements in k rounds. (2) There is a

polynomial time algorithm that, given n (in unary), produces An.

3. A randomized algorithm to sort n elements is one that ips coins. For these algorithms we

could �x the number of processors and ask what the expected number of rounds is, or we

could �x the number of rounds and ask what the expected number of processors is. We will

do the latter. The former can be found in [15].

We noted above that the model assumes transitive closure is free. Some of our algorithms work

with the weaker assumption that only a partial transitive closure is free.

De�nition 2.2

1. Given a directed graph G the 2-step transitive closure is the graph formed as follows: If in

our original comparison graph we have (x; y) and (y; z) then we will add to that graph (x; z).

Note that if we have (x; y), (y; z), and (z; w) we do not add (x;w).

2

2. Let d � 2. Given a directed graph G the d-step transitive closure is the graph de�ned

inductively as follows: (1) the 2-step transitive closure is as above. (2) the d-step transitive

closure is the 2-step transitive closure of the (d� 1)-step transitive closure.

De�nition 2.3

1. sort(k; n) is the number of processors needed to sort n elements in k steps. The algorithms

may be nonconstructive.

2. csort(k; n) is the number of processors needed to sort n elements in k steps by means of a

constructive algorithm.

3. sort(k; n; d) is the number of processors needed to sort n elements in k steps by means of an

algorithm that only uses d-step transitive closure. The algorithm may be nonconstructive.

4. csort(k; n; d) is the number of processors needed to sort n elements in k steps by means of a

constructive algorithm that only uses d-step transitive closure.

5. rsort(k; n) is the expected number of processors in the best randomized algorithm for sorting

in k rounds.

Note 2.4 When we use order notation we take k to be a constant. Hence a statement like

\sort(k; n) = O(n1+1=k(log n)2�2=k)" means that the multiplicative constant might depend on k.

We survey all known upper and lower bounds on the quantities in De�nition 2.3. We will not

give full proofs; rather, we give proof sketches. We have two goals:

1. The reader should learn that there are many interesting constant-time parallel sorting algo-

rithms in the literature and that they use mathematics of interest.

2. The reader should be inspired to look into the literature for more detail on some algorithms

of interest.

A companion paper (in preparation) will discuss what happens if you try to code up these algo-

rithms. This companion paper will be largely based on Evan Golub's thesis [12]. Bollob�as and

Hell [7] wrote a survey on graphs and orders which contained (among other things) information on

constant round sorting as of 1985. Our paper can be considered an updated version of that part of

their paper.

3 Nonconstructive Methods

3.1 The First Nonconstructive Algorithm

The �rst k-round sorting algorithm that uses a subquadratic number of processors is due to Hag-

gkvist and Hell [13]. They showed that sort(k; n) � O(n�k log2 n) where �k =
3�2k�1�1
2k�1

.

Lemma 3.1 ([13]) Let 3
2
< � < 2. Let p =

�
n2��

�
, q =

�
n4�2�

�
, and r =

�
2n4��6 log2 n

�
. There

exists a graph B on n vertices with pqr edges such that G does not contain Kp;q.

3

Proof sketch: Let

A = jfG : G has n vertices and pqr edges gj,
B = jfG : G has n vertices and pqr edges and G has Kp;qgj,
C = the number of Kp;q in Kn.

Some (non-trivial) algebra shows AC
B > np+q and C < np+q. Hence A > B. Therefore there are

graphs in A� B. (A more careful calculation shows that if you picked a graph at random from A

then the probability of getting one in A�B is close to 1.)

De�nition 3.2 Let n; t 2 N. We de�ne the graph P t
n = (V;E) by

V = f1; : : : ; ng.
E = f(i; j) : ji� jj � tg.
Note that P t

n has � tn edges. Also note that all the edges are entirely contained in one of the

following (non-disjoint) sets:

fjt+ 1; : : : ; (j + 2)tg as j = 0; 1; : : : ;
�
n
t

�� 2

fn� 2t+ 1; : : : ; ng.

Lemma 3.3 ([13]) Let n; p; q 2 N and G be such that p2 � q, G is an undirected graph on n

vertices, and G does not contain Kp;q. Let G0 be any acyclic orientation of G. Let H be the

transitive closure of G0. Then there exists a set of vertices W such that jW j � 2np
q and G�W is

a subgraph of P 7q
n . Hence G has O(p

2n
q

+ qn) edges.

The upper bound on sort(2; n) is simpler than the upper bound on sort(k; n) hence we present

it separately.

Theorem 3.4 ([13]) sort(2; n) � O(n5=3 log n).

Proof: Let �; p; q; r; n and G be as in Lemma 3.1. We will set � later.

ALGORITHM

Step 1: (Round 1) Compare xi : xj i� (i; j) is an edge of G. (This takes pqr = O(n� logn)

comparisons.) Let G0 be the orientation of G obtained by directing i to j i� xi < xj .

Let H be the transitive closure of G0.
Step 2: (Round 2) Compare all xi : xj such that (i; j) is not an edge of H. (By Lemma 3.3 this

takes O(p
2n
q

+ qn) = O(n� + n5�2�) comparisons.)

END OF ALGORITHM

Set � = 5
3
to obtain the result.

Theorem 3.5 ([13]) sort(k; n) � O(n�k logn) where �k =
3�2k�1�1
2k�1

.

Proof sketch: We prove this by induction on k. The k = 1 case is obvious. The k = 2 case is

Theorem 3.4.

Assume the theorem is true for k � 1. Let �; n; p; q; r and G be as in Lemma 3.1. We will pick

� later.

ALGORITHM

4

Step 1: (Round 1) Compare xi : xj i� (i; j) is an edge of G. (This takes pqr = O(n� logn)

comparisons.) Let G0 be the orientation of G obtained by directing i to j i� xi < xj .

Let H be the transitive closure of G0.

Step 2: (Rounds 2; : : : ; k) By Lemma 3.3 G is the union of W and P 7q
n . Recall that P 7q

n can be

viewed as the (non-disjoint) union of O(nq) graphs, each of O(q) vertices. For each of

these O(n
q
) = O(n2��3) graphs use (inductively) O(q�k�1 log q) = O(n(4�2�)�k�1 logn)

processors to sort it in k�1 rounds. This requires O(n2��3+(4�2�)�k�1 log n) processors.

At the same time compare all (x; y) where x 2 W and y 2 fx1; : : : ; xng. This is

O(njW j) = O(n�) comparisons. If you set � = �k then all the rounds use O(n�k logn)

processors.

END OF ALGORITHM

3.2 An Improvement in the k = 2 Case

Bollob�as and Thomason [9] improved upon Theorem 3.4 in the k = 2 case.

The following lemma is implicit in [9].

Lemma 3.6 There exists a graph G such that (1) G has O(n3=2 logn) edges, and (2) If G0 is any
acyclic orientation of G and H is the transitive closure of G0 then H has O(n3=2 log n) edges.

Proof sketch: Assume you have a coin that has probability p = �(log np
n
) of being heads. Create

a graph on n vertices as follows: for each fi; jg, ip the coin. Put the edge fi; jg into the graph

i� the coin is heads. The probability that the graph will be have the desired properties is nonzero

(actually close to 1). Hence such a graph exists.

Theorem 3.7 ([9]) sort(2; n) � O(n3=2 log n).

Proof sketch: Let G be a graph shown to exist by Lemma 3.6. Use this graph and proceed

similar to Theorem 3.4.

Note 3.8 Some authors have credited [7] or [9] with the result sort(k; n) = O(n1+1=k log n). This

citation is incorrect and this result is not known to be true. However, Bollob�as [6] later obtained

sort(k; n) = O(n1+1=k
(log n)2�2=k

(log log n)1�1=k
) (see Section 3.4).

3.3 Expander Graphs

Pippenger [18] showed that sort(k; n) = O(n1+1=k(log n)2�2=k)

De�nition 3.9 [18] Let 1 � a � n=2. An a-expanding graph is a graph in which for any two

disjoint sets of vertices of size a+ 1, there is at least one edge between the two sets.

Lemma 3.10 ([18]) For 1 � a � n=2 there exists an a-expanding graph with O(n
2 log n
a) edges.

5

Proof sketch: Assume you have a coin that has probability p = 2 lnn
a

of being heads. Create

a graph on n vertices as follows: for each fi; jg, ip the coin. Put the edge fi; jg into the graph

i� the coin is heads. The probability that the graph will be an a-expander graph with O(n
2 log n
a

)

edges is nonzero (actually close to 1). Hence such a graph exists.

Lemma 3.11 ([18]) If n elements are compared according to the edges of an a-expander graph,

then there will be at most O(a log n) candidates remaining for any given rank.

From Lemma 3.11 it is easy to prove the following:

Lemma 3.12 ([18]) If n elements are compared according to the edges of an a-expander graph,

then they can be partitioned into O(n
a log n

) sets, each containing O(a log n) elements, such that the

relationship between any pair of elements is known unless they both belong to a common set.

Theorem 3.13 ([18]) sort(k; n) = O(n1+1=k(log n)2�2=k)

Proof sketch: We prove this by induction on k. For k = 1 this is trivial. Assume the theorem

for k � 1.

Let G be an a-expanding graph that is shown to exist by Lemma 3.10. We will pick the value

of a later.

ALGORITHM

Step 1: (Round 1) Compare xi : xj i� (i; j) is an edge of G. (This takes O(n
2 log n
a) comparisons.)

Let G0 be the orientation of G obtained by directing i to j i� xi < xj . Let H be the

transitive closure of G0.

Step 2: (Rounds 2; : : : ; k) Using Lemma 3.12 one can show that fx1; : : : ; xng can be partitioned

into O(n
a log n

) groups of size O(a log n) such that all comparisons between di�erent groups

are known. Sort the groups inductively in k � 1 rounds. This takes

O(
n

a log n
(a log n)

1+ 1
k�1 (log(a log n))

2� 2
k�1)

processors.

END OF ALGORITHM

To achieve the result set a = �(n1�1=k

(lnn)1�2=k
):

3.4 Super Expander Graphs

Alon and Azar [3] showed that sort(2; n) = O(n3=2 log np
log log n

). Bollob�as [6] extended this to show

that sort(k; n) = O(n1+1=k
(log n)2�2=k

(log log n)1�1=k
)

All these results use graphs similar to the a-expander graphs discussed in Section 3.3. We sketch

the algorithm of Alon and Azar and then make some brief comments about [6].

We de�ne a subset of a-expander graphs that has additional expanding properties. The following

de�nition is implicit in [3].

6

De�nition 3.14 Let a; n 2 N and a =
(log n). A graph G on n vertices is an a-super-expander

if the following hold.

1. If A and B are disjoint subsets of vertices with a vertices each then some v 2 B has at least

log2 n neighbors in A.

2. Let x � a=e
p

log2 n. If A and B are disjoint sets such that jAj = x and jBj = x(log2 n)
1=4,

each v 2 A that has at least log2 n neighbors in B.

The following lemma asserts that there exists small a-super-expander graphs. It is similar to

Lemma 3.10; however we will be using it with a di�erent value of a to obtain a better upper bound

on sort(k; n).

Lemma 3.15 ([3]) There exists an a-super-expanding graph with O(n
2 log n
a) edges.

Proof sketch: Assume you have a coin that has probability p = �(log n
a

) of being heads. Create

a graph on n vertices as follows: for each fi; jg, ip the coin. Put the edge fi; jg into the graph

i� the coin is heads. The probability that the graph will be an a-super-expander with O(n
2 log n
a

)

edges is nonzero (actually close to 1). Hence such a graph exists.

Lemma 3.16 ([3]) If n elements are compared according to the edges of an a-super-expanding

graph, then there will be at most O(a log n= log log n) candidates remaining for any given rank.

Theorem 3.17 ([3]) sort(2; n) = O(n3=2 log np
log log n

)

Proof sketch: This is similar to the k = 2 case of Theorem 3.13. The value of a needed is

a = �(
p
n log log n).

Theorem 3.18 ([6]) sort(k; n) = O(n1+1=k
(log n)2�2=k

(log log n)1�1=k
)

Proof sketch: A rather complicated type of graph is de�ned which will, if used to guide

comparisons, yield much information. Let

p = �(
n1=k(log n)2�2=k

n(log log n)1�1=k
):

Assume you have a coin that has probability p of being heads. A graph on n vertices as follows: for

each fi; jg, ip the coin. Put the edge fi; jg into the graph i� the coin is heads. The probability

that the graph will be of this type and have O(n1+1=k
(log n)2�2=k

(log logn)1�1=k
) edges is nonzero (actually close

to 1). We use this type of graph in round 1 and then proceed inductively.

7

4 Constructive Methods

4.1 Merging and Sort

Let merge(k; n) be the number of processors needed to merge two lists of n elements in k rounds.

Haggkvist and Hell [14] present constructive proofs for the following upper bounds : merge(k; n) =

�(n1+1=(2
k�1)) and csort(k; n) = O(n1+2=

p
2k). Their sorting algorithm uses parallel merging. The

paper gives matching upper and lower bounds for merging. While all that was needed was an upper

bound for merging, knowing the exact bound allows us to know that the sorting algorithm cannot

be improved via an improvement to the bound on merging.

Lemma 4.1 ([14]) merge(k; n) = O(n
2k

2k�1)

Proof sketch:

The algorithm given for merging two ordered lists of n elements is to partition each list into

groups, and then do a pairwise comparison of the �rst element of each group in the �rst list with

the �rst element of each group in the second list. After doing these comparisons, there will be a

small number of groups whose members are still unordered relative to one another. To prove this

they consider the following graph: V is the set of groups, and an edge is placed between A and B

if there is an x 2 A and a y 2 B such that the ordering x : y is not known. They show that this

graph is planar and thus linear in size.

Haggkvist and Hell establish that a group size of O(n1=3) is optimal for two round parallel

merging, giving merge(n; 2) = O(n4=3). By applying induction on the merging of the groups whose

orientation was not previously determined by the comparison of the �rst elements of each group,

they derive the generalization merge(k; n) = �(n
2k

2k�1)

Note 4.2 Haggkvist and Hell also showed that merge(k; n) =
(n
2k

2k�1).

Theorem 4.3 ([14])

1. csort(3; n) = O(n8=5).

2. csort(4; n) = O(n20=13).

3. csort(5; n) = O(n28=19).

4. csort(k; n) = O(n1+2=
p
2k).

Proof sketch: The algorithm to sort a list of values in k rounds is based on using some number

of rounds j to partition the list and sort each partition, and then use the remaining k� j rounds to

do a pairwise merge of those partitions. In the 3 round case, the list is partitioned into groups of

size O(n2=5) and each partition is then sorted in one round using O(n6=5) processors per partition,

or a total of O(n8=5) processors. Then in the two remaining rounds, a pairwise merging of the

O(n2=5) groups would produce all information required to fully order the original n values.

The other results are similar. In each case the calculation of the optimal value of j is nontrivial.

Let sk denote the smallest value such that a j exists that allows one to sort n numbers in k-rounds

8

with O(nsk) processors. The following recurrence allows one to �nd sk for any particular k; however,

it has no closed form.

sk+1 = minf2(2
j � 1)sk+1�j � 2j

(2j � 1)sk+1�j � 1
: j > 0 ^ sk+1�j � 2j

2j � 1
g

From this one can derive the approximation csort(k; n) = O(n1+2=
p
2k). The calculation is not

straightforward.

4.2 Attempts at the k = 2 case

Theorem 4.3 did not produce a constructive 2-round subquadratic sorting algorithm. This was

eventually solved by Pippenger (see Section 4.3); however, before it was solved there were some

interesting results that broke the
�n
2

�
barrier.

1. Haggkvist and Hell [13] showed csort(2; n) � 39
45

�n
2

�
. Their proof used the Peterson graph and

balanced incomplete block designs.

2. Bollob�as and Rosenfeld [8] showed csort(2; n) � 4
5

�n
2

�
. Their proof used the Erdos-Renyi

graph [11] based on projective geometry.

4.3 The First Constructive Subquadratic Algorithm for k = 2

In 1984 the �rst constructive 2-round subquadratic sorting algorithm was discovered by Pip-

penger [19] who showed sort(2; n) = O(n1:95). He never wrote it up; however, several references to

it exist including one in [7]. A year later he improved this result and generalized to k rounds by

developing the framework of expander graphs for sorting (see Section 3.3) and showing that the

graphs constructed by Lubotzky, Phillips, and Sarnak [16] were a-expander graphs. These can be

used to obtain sorting algorithms that are constructive, though not as good as the nonconstructive

ones in Theorem 3.13.

Lemma 8 of [18] proves two things. We separate them out into two separate lemmas.

Lemma 4.4 ([18]) Let G be a graph on n vertices. Let �i be the ith largest eigenvalue of the

adjacency matrix. If �1 = p+ 1 and (8i � 2)[�i � 2
p
p] then G is an O(np

p)-expanding graph.

Lemma 4.5 ([16, 18]) Let p; q be primes that are congruent to 1 mod 4. Assume p < q. There

exists an explicitly constructed O(qp
p
)-expanding graph with q + 1 vertices and O(pq) edges.

Proof sketch: Lubotzky, Phillips, and Sarnak [16] constructed a p+1-regular graph G on q+1

vertices with the following properties: (1) the largest eigenvalue of the adjacency matrix, p+1, has

multiplicity 1, and (2) all other eigenvalues have magnitude at most 2
p
p. Clearly this graph is on

q + 1 vertices and has O(pq) edges. By Lemma 4.4 this graph is an O(qp
p
)-expanding graph.

Note 4.6 The graphs constructed by Lubotzky, Phillips, and Sarnak are somewhat complicated.

They use graphs associated to certain groups.

9

Lemma 4.7 Let 1 � a � n. Let n
a
be suÆciently large. There is an explicitly constructed a-

expanding graph G on n vertices of size O(n3=a2).

Proof sketch: We need to �nd primes p; q such that (na)
2 � p � 2(na)

2, n � q � 2n, and both

p; q are congruent to 1 mod 4. Such exists for n
a large by the Prime number theorem for arithmetic

progressions (see [10] for example). Apply Lemma 4.5 to obtain a graph on �(n) vertices that is a

O(qp
p)-expanding, hence O(

n3

a2
)-expanding.

Theorem 4.8 csort(k; n) � O(n
1+ 2

(k+1) (log n)
2� 4

(k+1)).

Proof sketch: This proof is similar to that of Theorem 3.13 except that we use Lemma 4.7

with

a = �(
n1�1=(2k�1)

(log n)2=(2
k�1)

):

4.4 Two Simple Constructive Algorithm

Alon [2] showed that csort(2; n; 2) = O(n7=4). His algorithm is simpler than that of Theorem 4.8.

Since Alon's result is about limited closure sorting we will discuss it in Section 7; however by

combining it with the recurrence in Theorem 4.3 he obtained improvements over Theorem 4.3. We

give the �rst few improvements. More numbers can be generated; however, the asymptotic values

do not improve.

Theorem 4.9 ([2])

1. csort(2; n) = O(n7=4).

2. csort(3; n) = O(n8=5).

3. csort(4; n) = O(n26=17).

4. csort(5; n) = O(n22=15).

Pippenger [18] noticed that a variant of Alon's algorithm actually yields csort(2; n) � O(n5=3 logn).

(We will discuss this algorithm when discussing Alon's algorithm.) Golub [12] noticed that this

could be combined with an easy modi�cation of the recurrence in Theorem 4.3 to obtain a simple

constructive algorithm which is better than that of Theorem 4.9. We give the �rst few improve-

ments. More numbers can be generated; however, the asymptotic values do not improve.

Theorem 4.10

1. csort(2; n) = O(n5=3 log n) (use Pippenger's modi�cation of Alon).

2. csort(3; n) = O(n8=5) (use Theorem 4.9 or Theorem 4.3).

3. csort(4; n) = O(n3=2).

4. csort(5; n) = O(n23=16).

10

4.5 A Constructive Algorithm via Pseudo-Random Generators

Wigderson and Zuckerman [23] present a constructive proof that sort(n; k) = O(n1+1=k+o(1)). Their

algorithm is based upon Pippenger's non-constructive sorting algorithm (See Section 3.3). Recall

that Pippenger showed that small a-expander graphs were useful for sorting, and then showed

that small a-expander graphs exist. The value of a taken for k round sorting was a = n
1� 1

k

(lnn)
1� 2

k

.

Wigderson and Zuckerman present a constructive proof of the existence of a a-expander graphs

with slightly worse values of a.

De�nition 4.11 [24] A distribution D on f0; 1gn is a Æ-source if for all x 2 f0; 1gn, D(x) � 2�Æn.

We intend D to be an approximation to the uniform distribution. If Æ = 1 then D is uniform.

The smaller Æ is the worse an approximation D is.

De�nition 4.12 [17] Let n;m; t 2 N and 0 < �; Æ < 1. A function E : f0; 1gn�f0; 1gt ! f0; 1gm is

an (n;m; t; Æ; �)-extractor if for every Æ-source D, the distribution of E(x; y)y induced by choosing

x from D and y uniformly in f0; 1gt is within statistical distance � of the uniform distribution.

We think of t << n and m =
(n). Hence we think of having a weak random source D for

strings in f0; 1gn and a uniform random source for f0; 1gt, and producing from these a (stronger)

random source.

We �rst state that there are P-time, DSPACE(O(n)), computable extractors, and then state

that such can be used to construct nÆ-expanding graphs for an appropriate Æ.

Lemma 4.13 [17] Let Æ; � be functions of n such that 1=n � Æ � 1=2 and 2�Æn � � � 1=n.

Let t = O(log �
�1 log2 n log Æ�1

Æ). There exists polynomial-time linear-space computable (n;m; t; Æ; �)-

extractors.

Lemma 4.14 [23] If there is an (n;m; t; Æ; 1=4)-extractor computable in linear space then there

is an N Æ-expanding graph on N = 2n nodes with maximum degree N21+2t�m constructible in

DSPACE(log n), hence in P.

Proof sketch: Let E : f0; 1gn � f0; 1gt ! f0; 1gm be the extractor. First de�ne a bipartite

graph H = (V;W;E) by V = f0; 1gn, W = f0; 1gm, and (x; z) 2 E i� (9y)[E(x; y) = z]. We obtain

H 0 from H by removing all vertices in W that have degree larger than the average degree. Now

form a graph G as follows: the vertex set is V and we connect x to x0 if there exists z such that

both (x; z) and (z; x) are edges in H 0. Using the properties of extractors one can show that G is

an N Æ-expander.

By combining Lemma 4.13, 4.14, and the techniques of Theorem 3.13 one can obtain the

following.

Theorem 4.15 ([23]) csort(k; n) � O(n1+1=k+o(1)).

Note 4.16 Most of the algorithms discussed in this paper only work if n is \large." The algorithm

in Theorem 4.15 needs much larger n than usual.

11

5 A Randomized Algorithm

Alon, Azar, and Vishkin showed rsort(k; n) = O(n1+1=k). Their algorithm is fairly simple; however,

the analysis requires care.

Theorem 5.1 ([4]) rsort(k; n) = O(n1+1=k).

Proof sketch:

In the �rst round of this algorithm, n1=k � 1 values are chosen at random and then compared

to all n � 1 other values requiring processors. Between rounds, the n values are partitioned into

O(n1=k) blocks (A1; : : : ; An1=k) based on the now ordered list of O(n1=k) values such that if i < j

then all members of Ai are less than members of Aj .

In the remaining k � 1 rounds, each Ai is sorted. A careful analysis shows that the expected

number of processors required to do this will be O(n1+1=k).

6 A Nonconstructive Algorithm for sort(2; n; d)

Bollob�as and Thomason [9] were the �rst ones to look at sorting with limited transitive closure.

They used nonconstructive means, similar (though more complicated) to those we have seen in

Theorems 3.7, 3.4, 3.13, 3.17 and 3.18. Hence we omit even a sketch here.

Theorem 6.1 ([9]) sort(2; n; d) � O(1
2d
n1+

d
2d�1 (log n)1=2d�1).

7 A Constructive Algorithm for sort(2; n; 2)

Alon [2] showed that csort(2; n; 2) = O(n7=4). He used techniques in projective geometry over

�nite �elds to construct graphs. He used the eigenvalue methods of [21] to prove his graphs

had the relevant properties. Pippenger used a variation of Alon's graphs to obtain csort(2; n) =

O(n5=3 log n).

Notation 7.1 If q is a prime power than Fq is the �nite �eld on q elements.

De�nition 7.2 [2] Let d; q 2 N and let q be a prime power. The number d will be referred to as

the dimension. The Geometric Expander over Fq of dimension d is the bipartite graph that we

construct below:

1. Create a set of d+ 1 tuples of the following form

(1; a1; a2; : : : ; ad+1) a1; : : : ; ad+1 2 f0; 1; : : : ; q � 1g
(0; 1; a2; : : : ; ad+1) a2; : : : ; ad+1 2 f0; 1; : : : ; q � 1g
(0; 0; 1; a3; : : : ; ad+1) a3; : : : ; ad+1 2 f0; 1; : : : ; q � 1g

...

(0; 0; 0; : : : ; 0; 1; ad+1) ad+1 2 f0; 1; : : : ; q � 1g

Note that each tuple represents a hyperplane in d+1 space over Fq. (Alternatively we could

have allowed all tuples that were not (0; : : : ; 0) and then identify any two that di�er by a

constant multiple in Fq.)

12

2. Let U and V be the set of tuples above. An edge will exist between u 2 U and v 2 V i�

u � v = 0 in the �eld Fq. (This is equivalent to saying that the planes which represent u and

v are orthogonal to one another.)

Note 7.3 Note that the number of vertices in the graph in De�nition 7.2 is �(qd+1) and the

number of edges is �(q2d+1). If we denote the number of vertices by n then the number of edges is

�(n2�
1
d).

The following de�nition is implicit in [2].

De�nition 7.4 An (�na; �nb; �nc; Ænd)-expander is a bipartite graph G = (U; V;E) such that

jU j = jV j = n and the following two properties hold.

1. (8Z � V)[jZj � �na) jfx 2 U : jN(x) \ Zj � �nbgj � �nc]

2. (8Y � V)[jY j � �nb) jN(Y) � n� Ænd]

Alon proved the following theorem using the eigenvalues methods of [21].

Lemma 7.5 ([2]) Let G = (U; V;E) be the Geometric expander of dimension 4 over Fq. Let n be

the number of vertices in U (also V). Then G is an (3n3=4; n1=2; n1=2; n3=4)-expanding graph with

�(n7=4) edges.

The following lemma is implicitly in [2].

Lemma 7.6 If there exist (�na; �nb; �nc; Ænd)-expanders of size O(ne) then we can sort in 2 rounds

using only 2-step transitive closure in O(nmaxfe;d+1;c+2�a;a+1g) processors.

Proof sketch: Assume that we have a set of n values that we want to order and an (�na; �nb; �nc; Ænd)-

expanding graph of size O(ne).

1. (Round 1) Do the comparisons as designated by the graph. This requires O(ne) processors.

Take the 1-step transitive closure.

2. (Round 2) For all x; y such that we do not know how they compare, compare x : y.

We need to know how many comparisons remain for Round 2. Since we know that there exists

an ordering of the n values, we can imagine having the vertices correctly ordered. Note that the

graph connecting these vertices is still an (�na; �nb; �nc; Ænd)-expander. We can then divide the

vertices into 1=� blocks (A1; : : : ; An1�a=�) each of �na vertices. By using the properties of being an

(�na; �nb; �nc; Ænd) expander one can show that there are at most O(nmaxfd+1;n+2�ag) comparisons

left between elements in the same block, and at most O(na+1) comparisons left between elements

in di�erent blocks. The result follows.

Theorem 7.7 ([2]) sort(2; n; 2) = O(n7=4).

Proof: This follows from Lemma 7.5 and Lemma 7.6.

We now discuss Pippenger's variant on Alon's algorithm. As stated above Alon used eigenvalue

methods. In particular he showed the following.

13

Lemma 7.8 ([2]) Let H = (V; V;E) be a geometric expander of degree d over a �eld of q elements.

Let G = (V;E0) be the graph where (x; y) 2 E0 i� (x; y) 2 E and x 6= y. Then G has �(qd) vertices

and O(q2�1=d) edges. Let �1; : : : ; �n be the eigenvalues of the matrix for G in decreasing order.

Then �1 = �(q2d�2) and �2 = � � � = �n = O(qd�1). The constants work out so that if d = 3 then

�2 � 2
p
�1.

The following lemma is implicit in [18]. It follows from Lemmas 4.4 and 7.8.

Lemma 7.9 Let d = 3. Let G be as in Lemma 7.8. Let n be the number of vertices in G. Then G

is an O(n1=3)-expander with O(n5=3) edges.

From Lemmas 7.9 and 3.12 one can easily prove Theorem 4.10.

7.1 Using Merging for sort(k; n; 2) with k odd

Bollob�as and Thomason [9] show that csort(n; k; 1) = O(n
3
2
+ 1

2(2k+1=2
�1)) for k odd.

Their algorithm is similar to the approach of Haggkvist and Hell (see Section 4.1). In that

algorithm you �rst partition the original list into sublists, recursively sort those sublists (in j

rounds), and merge them back into a single ordered list (in k�j) rounds, where j is picked cleverly.

By contrast the algorithm of Bollob�as and Thomason uses k � 2 rounds to recursively sort the

sublists and then only 2 rounds to accomplish the merging of the sublists. These last 2 rounds

are done in a clever way. This uses more processors than Haggkvist-Hell; however, rather than

computing the full transitive closure of the relationships learned, only 2-step transitive closure.

Theorem 7.10 ([9]) For k odd, sort(n; k; 1) = O(n
3
2
+ 1

2(2k+1=2
�1)).

Proof sketch: We show this by induction. If k = 1 then this is trivial. Assume k > 1 and k is

odd.

ALGORITHM

Step 1: (Preprocessing. Does not count.) Partition the n values into m sublists (each of size

n=m) where m = n1=2
(k�1=2)

.

Step 2: (Rounds 1 to k � 2) Sort these sublists recursively in k � 2 rounds.

Step 3: (Round k � 1) For all sublists X = fx1; x2; : : : ; xn=mg and all v =2 X compare v to all

elements in fxp
n=m

; x
2
p

n=m
; : : : ; xn=mg simultaneously. We view each sublist as having

been partitioned into sublocks (e.g. the elements between x
4
p

n=m
and x

5
p

n=m
form a

sublock). At the end of this round we know, for each v, which sublock it belongs to.

Step 4: (Round k) For each v and each sublist X we know which sublock of X, v belongs.

Compare v to the elements in that sublock.

END OF ALGORITHM

A straightforward analysis shows that this algorithm uses the number of processors speci�ed.

A careful look at the last two rounds shows that it only uses 2-step transitive closure.

14

8 Lower Bounds

Haggkvist and Hell [13] showed that sort(k; n) �
(n1+1=k). Bollobas and Thomason [9] improved

the constant. Alon and Azar [3] improved this to sort(k; n) �
(n1+1=k(log n)
1
k) (for k � 2). Note

that this is quite close to the upper bound in Section 3.4. Of more importance, this bound is larger

than rsort(k; n) (see Section 5); hence sorting-in-rounds is a domain where randomized algorithms

are provably better than deterministic.

Theorem 8.1 ([13]) sort(k; n) > n1+1=k

2k+1 � n=2.

Proof sketch: By induction on k. For k = 1 this is trivial. Assume true for k� 1. Assume, by

way of contradiction, that the �rst round uses � 2�kn1+1=k � n=2 processors. Let G be the graph

of comparisons made.

By looking at the average degrees of vertices one can show that there is a set of n=2 nodes such

that the the induced subgraph G0 on them is s-colorable where s = 2�k�2n1=k. Color G0 with s

colors. Let V1; : : : ; Vs be the color classes. Orient G
0 as follows: For all 1 � i < j � s, for all v 2 Vi,

for all u 2 Vj , if (v; u) is an edge then set v < u. Orient G so that you use this orientation on G0

and all the vertices not in G0 are less than all the vertices in G0. Once the transitive closure of G is

taken one still needs to sort each Vi in k�1 rounds (one also needs to sort those elements not in G0

but this is not needed for the lower bound). One can show the lower bound by using the inductive

lower bound on each Vi and some algebra.

Theorem 8.2 ([9]) For all c <
p
3=2, sort(k; n) � cn1+1=k

Proof sketch: This proof is similar to that of Theorem 8.1 except that the V1; : : : ; Vs are

obtained by a greedy coloring and more care is taken in showing the largest value of
Ps

i=1 sort(k�
1; jVij). Lagrange multipliers are used.

The key to the proofs of Theorems 8.1 and 8.2 is that we still need to sort each Vi. The

proof does not use the fact that you might have to make some comparisons between vertices in

di�erent Vi's. To improve this lower bound Alon and Azar showed that you will have to make such

comparisons.

Lemma 8.3 Let G be a graph with n vertices and dn edges. There exists an induced subgraph on
n
4
vertices such that (1) G0 has degree < 4d, and (2) there is a 4d-coloring of G0 with color classes

V1; : : : ; V4d such that for all 1 � i; j � 4d, for all x 2 Vi, there are at most 2ji�jj+1 neighbors in Vj.

Proof sketch: Remove successively the highest degree vertex n
2
times. Let G0 be the induced

subgraph on the remaining n
2
vertices. One can show that G0 has degree < 4d. Clearly G0 is

4d-colorable. Let U1; : : : ; U4d be the color classes. A probabilistic argument shows that there exists

a permutation of f1; : : : ; 4dg that satis�es the properties needed.

Lemma 8.4 Let d be such that d = o(n) and d =
(log n). Let G be a graph with n vertices and

dn edges. There exists an orientation of G such that the complement of its transitive closure has

at least
(n
2

d log(nd)) edges.

15

Proof sketch: Use Lemma 8.3 to obtain G0 and V1; : : : ; V4d as speci�ed there. Orient G0 as
follows: For all 1 � i < j � m, for all v 2 Vi, for all u 2 Vj , if (v; u) is an edge then set v < u.

Orient G so that you use this orientation on G0 and all the vertices not in G0 are less than all the

vertices in G0. The complement of the transitive closure will not contain any edges within an Vi.

In addition, because of the limit on how many edges can go from an Vi to an Vj, one can estimate

additional lower bounds on the number of edges in the complement of the transitive closure. (This

is highly non-trivial.)

Theorem 8.5 ([3]) For k � 2, sort(k; n) �
(n1+1=k(log n)1=k).

Proof sketch:

We prove this by induction. Note that k = 2 is the base case and is non-trivial. Assume that

there is an algorithm that sorts n elements in 2 rounds and takes dn processors. We know that

d =
(n1=3) by Theorem 8.1. We can assume d = o(n2=3) since if it is not then the theorem for

k = 2 is already true. Let G be the graph representing the �rst round. Because of the bounds on

d we can apply Lemma 8.4 to the graph to obtain an orientation such that the compliment of the

transitive closure has
(n
2

d log(nd)) edges. Hence the second round needs
(n
2

d log(nd)) processors.

Algebra shows that d =
(
p
n logn).

We now sketch the induction step. It will be easier than the k = 2 case since it does not use

Lemma 8.4. Assume the lower bound for k � 1 where k � 3. Assume there is an algorithm for

sorting in k rounds. Let G be the graph representing the �rst round of the algorithm. Assume G

has dn edges. By Turan's theorem (see [5] for a nice probabilistic proof) a graph with dn edges has

an independent set of size n
2d+1 . By repeated application of Turan's theorem we can �nd s =
(d)

pairwise disjoint independent sets of size
(n
1+d) which we denote V1; : : : ; Vs. Let V0 be all the

other vertices. Orient G as follows: For all 1 � i < j � s, for all v 2 Vi, for all u 2 Vj , if (v; u) is

an edge then set v < u. The remaining k � 1 rounds need to sort each Vi, i � 1. Algebra and the

induction hypothesis suÆce to prove the result.

9 Open Problems

The next section has tables of known results, both upper and lower bounds. The tables yield many

open questions about closing these gaps.

There are no lower bounds for constructive sorting except those bounds that come from general

sorting. Hence another open question would be to either obtain lower bounds for csort(k; n) that

use the fact that the algorithm is constructive, or show that any sorting algorithm can be turned

into a constructive one.

Another open problem is to obtain simpler proofs of the known upper bounds, especially the

constructive ones.

10 Tables of Results

In this section we put all the known results into tables. We leave out the big-O's and big-
's unless

there is an interesting point to be made about the constants.

16

10.1 Nonconstructive Methods for Sorting

k k = 2 k = 3 ref

|||||||||||- ||||||{ ||||||| |-

n(3�2
k�1�1)=(2k�1) log n n5=3 log n n11=3 log n [14]

n3=2 log n [9]

n1+1=k(log n)2�2=k n3=2 log n n4=3(log n)4=3 [18]

n3=2 log np
log logn

[3]

n1+1=k
(log n)2�2=k

(log log n)1�1=k
n3=2 log np

log logn
n4=3

(log n)4=3

(log log n)2=3
[6]

1. All of the above results use the Probabilistic method.

2. In [14] a graph is picked at random from the set of all graphs with n vertices and n�k edges

where �k =
3�2k�1�1)

(2k�1)
.

3. In all of the other algorithms a graph was picked by assigning to each edge a probability.

10.2 Constructive Methods for Sorting

k k = 2 k = 4 ref Math Used

|||||||||| ||||||{ |||||{ |- ||||||
39
45

�n
2

�
[13] Peterson graph and block designs

4
5

�n
2

�
[8] Erdos-Renyi graph and proj. geom.

n1+(2=
p
2k) n2 n20=13 [14] Merging and Graph Theory

n1+(2=
p
2k) n7=4 n26=17 [2] Proj. geom. over �nite �elds

n1+(2=
p
2k) n7=4 n3=2 [18; 12] Proj. geom. over �nite �elds

n1+2=(k+1)(logn)2�4=(k+1) n5=3(log n)2=3 n7=5(log n)6=5 [18] Graphs of Groups from [16]

n1+1=k+o(1) n3=2+o(1) n5=4+o(1) [23] Extractors

The �rst two results listed for general k are both approximations for a general recurrence. For

all results calculated the �rst algorithm seems better; however, the asymptotic seem to be the same.

10.3 Limited Closure Sorting

The only result here are for 2-round sorting.

17

d d = 2 ref Constructive? Math Used

|||||||||| ||||||{ |||||{ |||||{ ||||||
1
2dn

1+ d
2d�1 (log n)1=2d�1 1

4
n5=3(log n)1=3 [9] No Prob. Method

n7=4 [2] Yes Proj. Geom. over �nite �elds

10.4 Lower Bounds

All the lower bounds use graph theory. Under \Math Used" we point out other math that was

used.

Problem Bound ref Math Used

||||||{ |||||{ |- ||||||

sort(k; n) n1+1=k

2k+1 � n=2 [13]

sort(k; n) (
p
3=2 � �)n1+1=k [9] Lagrange Mult.

sort(k; n) n1+1=k(log n)
1
k [3] Prob. Meth.

sort(2; n; 2) n5=3 [9]

sort(2; n; d) n1+d=2d�1 [9]

Merging n
2k

2k�1 [14]

11 Acknowledgment

We want to thank Nick Pippenger for intellectual inspiration and helpful discussions.

References

[1] S. Akl. Parallel computation: models and methods. Prentice Hall, 1997.

[2] N. Alon. Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Combina-

torica, 6, 1986.

[3] N. Alon and Y. Azar. Sorting, approximate sorting, and searching in rounds. SIAM Journal

on Discrete Mathematics, 1:269{280, 1988.

[4] N. Alon, Y. Azar, and U. Vishkin. Tight bounds for parallel comparison sorting. In Proc. of

the 29th IEEE Sym. on Found. of Comp. Sci., pages 502{510, 1988.

[5] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 1992.

[6] B. Bollob�as. Sorting in rounds. Discrete Mathematics, 72, 1988.

[7] B. Bollob�as and P. Hell. Sorting and graphs. In I. Rival, editor, Graphs and Orders, pages

169{184. D. Reidel Publishing Company, 1985.

18

[8] B. Bollob�as and M. Rosenfeld. Sorting in one round. Israel Journal of Mathematics, 38, 1981.

[9] B. Bollob�as and A. Thomason. Parallel sorting. Discrete Applied Mathematics, 6, 1983.

[10] H. Davenport. Multiplicative number theory. Springer, 1980.

[11] P. Erdos and A. Renyi. On a problem in the theory of graphs (in Hungarian). Publ. Math.

Inst. Hungar. Acad. Sci., 7, 1962.

[12] E. Golub. Empirical Studies in Parallel Sorting,1999. PhD thesis,

University of Maryland,College Park. http://www.cs.umd.edu/�egolub/dissert.pdf.
[13] R. Haggkvist and P. Hell. Parallel sorting with constant time for comparisons. SIAM J.

Comput., 10(3):465{472, 1981.

[14] R. Haggkvist and P. Hell. Sorting and merging in rounds. SIAM Journal on Algebraic and

Discrete Methods, 3, 1982.

[15] F. T. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, and hyper-

cubes. Morgan Kaufman, 1992.

[16] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 1988.

[17] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and Systems

Sciences, 52(1):43{52, Feb. 1996. Earlier version in FOCS93. The title in FOCS93 was More

deterministic simultations in Logspace.

[18] N. Pippenger. Sorting and selecting in rounds. SIAM J. Comput., 16:1032{1038, 1987.

[19] N. Pippenger. Peronal communication, 2000.

[20] J. Spencer. Ten Lectures on the Probabilistic Method. Conf. Board of the Math. Sciences,

Regional Conf. Series, AMS and MAA, 1987.

[21] M. Tanner. Explicit construction of concentrators from generalized n-gons. SIAM Journal on

Algebraic and Discrete Methods, 5, 1984. Despite the title the main result relates eigenvalues

to expanders.

[22] L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348{355, Sept.

1975.

[23] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: explicit con-

struction and applications. Combinatorica, 19:125{138, 1999. Earlier version appeared in

FOCS93.

[24] D. Zuckerman. General weak random sources. In Proc. of the 31st IEEE Sym. on Found. of

Comp. Sci., pages 534{543, 1990.

19

