
Lab: Step by Step towards Programming a Safe Smart
Contract

Kevin Delmolino
del@terpmail.umd.edu

Mitchell Arnett
marnett@umd.edu

Ahmed Kosba
ahmed.essamk@gmail.com

Andrew Miller
amiller@cs.umd.edu

Elaine Shi
elaine@cs.umd.edu

Contents

1 Introduction 2
Intended audience. 2
Applicability of this tutorial. 2
Conceptual model for programming smart contracts. 2
Accompanying materials. 2

2 A Rock-Paper-Scissors Example 2
2.1 Corner Cases in Coding State Machines . 3
2.2 Implementing Cryptography . 4
2.3 Incentive Compatability . 6
2.4 Original Buggy Rock, Paper, Scissor Contract 7

1

1 Introduction

Intended audience. This tutorial is intended for instructors who wish to conduct a smart
contract programming lab, or students/developers who want to learn about smart contract
programming.

Applicability of this tutorial. While we use Ethereum’s Serpent language as a specific
example, this document is intended to be broadly applicable to smart contract programming
on top of a decentralized cryptocurrency.

Loosely speaking, we shall make some simplifying assumptions about the security model.
We assume that the decentralized cryptocurrency under consideration has a secure and in-
centive compatible consensus protocol, such that when rational miners comprise the majority
of compute power (or other forms of resources), in a Nash equilibrium, it is in the best in-
terest of rational miners to honestly execute a contract’s program logic. In reality, existing
decentralized cryptocurrency achieves only heuristic security. But we will make this assump-
tion nevertheless. How to design a provably secure decentralized consensus protocol under
rationality assumptions is a topic of future research.

Conceptual model for programming smart contracts. Based on the above simpli-
fying assumptions, we can simply assume that a smart contract is a special party in the
system who is trusted for correct operation, but not for privacy. Specifically, messages and
money sent to and from the contract, as well as states stored by the contract are publicly
visible. If you are a cryptographer reading this, it is meaningful to compare a contract with
a cryptographic ideal functionality – the latter is trusted both for correctness and privacy.

Accompanying materials. All example smart contracts in this document are written
for a specific snapshot of Ethereum. For the users’ convenience, we offer a VM image with
appropriate versions of the software pre-installed [1]. We also provide detailed Ethereum
reference manuals geared towards this specific snapshot of Serpent [2]. Finally, we also
recommend the reader to a more concise, Powerpoint presentation of this tutorial by Elaine
Shi and Andrew Miller [3].

For best learning outcomes, we strongly recommend that the reader take a hands-on
approach towards reading this lab tutorial, by running our examples in py-ethereum, and
deploying fixes to the pitfalls that we point out in this document.

2 A Rock-Paper-Scissors Example

We use a very simple Rock-Paper-Scissors contract to illustrate several pitfalls of smart
contract programming. Mistakes resembling these were actually observed in our Smart
Contract Programming Lab in “CMSC 414 - Undergraduate Security”.

2

2.1 Corner Cases in Coding State Machines

The first contract design error we will talk about is contracts causing money to disappear.
Some contracts require the participants to send an amount of money to enter the contract
(lotteries, games, investment apps). All contracts that require some amount of money to
participate have the potential to have that money lost in the contract if things don’t go
accordingly. Below is the add player function from our RPS contract. The function adds
a player and stores their unique identifier (msg.sender). The contract also takes a value
(msg.value) that is sent to the contract. The value is the currency used by ethereum, Ether.
Ether can be thought of in a similar light to Bitcoin; Ether is mined and used as the currency
to fuel all contracts as well as the currency that individuals will trade within contracts. Let’s
dive in and see if we can find a contract theft error in the add player contract below:

1 def add_player():

2 if not self.storage["player1"]:

3 if msg.value == 1000:

4 self.storage["WINNINGS"] =

5 self.storage["WINNINGS"] + msg.value

6 self.storage["player1"] = msg.sender

7 return(1)

8 return (0)

9 elif not self.storage["player2"]:

10 if msg.value == 1000:

11 self.storage["WINNINGS"] =

12 self.storage["WINNINGS"] + msg.value

13 self.storage["player2"] = msg.sender

14 return(2)

15 return (0)

16 else:

17 return(0)

In this section a user adds themselves to the game by sending a small amount of Ether
with their transaction. The contract takes this Ether, stored in msg.value, and adds it to
the winnings pool, the prize that the winner of each round will receive. Let’s consider two
scenarios our contract currently allows 1) a potential entrant sends too much or too little
Ether, 2) there are already two participants, so additional players send transactions to join,
but are not allowed. In both of the following scenarios the contract will keep their money.
If someone sent too much or too little to enter they will not be added as a player, but their
funds will be kept. Even worse, if the match is full any person who tries to join (they have
no way of knowing it is full) will pay to play but never be added to a game! Both of these
errors will cause distrust in our contract, eventually resulting in the community not trusting
this particular contract and, more importantly, this contract’s author - you.

3

So how do we fix these issues? It seems like our contract needs the ability to refund -
think about how you would do this. Go ahead and try it and see if your idea works! Are
there any other edge cases where issuing a refund should be considered? Look at the previous
section ”Sending Wei” for more information.

2.2 Implementing Cryptography

It goes without saying that as a student in a computer security course you would implement
cryptographic practices wherever you can. Thus given a contract that requires impactful user
inputs (ones that affect the outcome of said contract) cryptography should be implemented.
In our RPS contract the user is using a numeric scale as their input with 0: rock, 1: paper,
2: scissors. Let’s take a look at the function that registers their inputs and think about
possible vulnerabilities:

1 def input(choice):

2 if self.storage["player1"] == msg.sender:

3 self.storage["p1value"] = choice

4 return(1)

5 elif self.storage["player2"] == msg.sender:

6 self.storage["p2value"] = choice

7 return(2)

8 else:

9 return(0)

We can see that our input() function identifies the sender with msg.sender and then
stores their input choice in plaintext (where choice = 0, 1, or 2). The lack of encryption
means that the other player could see what their opponent played by looking at a block that
published it; with that information they could input the winning choice to ensure they always
win the prize pool. This can be fixed by using a commitment scheme. We will alter input()
to accept a hash of [sender, choice, and a nonce]. After both players have committed their
inputs they will send their choice and nonce (as plaintext) to an open() function. open()
will verify what they sent to input(). What they send to open() will be hashed, and that
hash will be checked against the hash the user committed through input(). If the two hashes
don’t match then the player will automatically lose based on the assumption they were being
dishonest. Understanding where crypto elements should be used is crucial to justifying why
others should use your contract.

In order to enhance the security and fairness of our contract we will implement a com-
mitment scheme using the hashing functions discussed earlier in this guide. The first change
that is necessary in our contract is to have the input() function accept the hash given from
the user. Our RPS application would prompt the participants in our game to send a hash of
their input and a nonce of their choosing. Thus choice = SHA3(msg.sender’s public address,
numerical input (0 or 1 or 2) + nonce). This hashed value is stored in the contract, but

4

there is no way for either opponent to discover the other’s input based on their committed
choice alone.

Now that we have the hash stored in the contract we need to implement an open()
function that we discussed earlier. Our open() function will take the plaintext inputs and
nonces from the players as parameters. We will hash these together with the unique sender
ID and compare to the stored hash to verify that they claim to have committed as their input
is true. Remember, up until this point the contract has no way of knowing who the winner
is because it has no way of knowing what the inputs are. The contract doesn’t know the
nonce, so it cannot understand what the choice sent to input() was. Below is the updated,
cleaned up contract (version2.py) implementing an open() and modifying check() to work
with our new scheme. Notice we have added a method open() and reorganized our check():

1 def input(player_commitment):

2 if self.storage["player1"] == msg.sender:

3 self.storage["p1commit"] = player_commitment

4 return (1)

5 elif self.storage["player2"] == msg.sender:

6 self.storage["p2commit"] = player_commitment

7 return(2)

8 else:

9 return(0)

10

11 def open(choice, nonce):

12 if self.storage["player1"] == msg.sender:

13 if sha3([msg.sender, choice, nonce], items=3) == self.storage["p1commit"]:

14 self.storage["p1value"] = choice

15 self.storage["p1reveal"] = 1

16 return(1)

17 else:

18 return(0)

19 elif self.storage["player2"] == msg.sender:

20 if sha3([msg.sender, choice, nonce], items=3) == self.storage["p2commit"]:

21 self.storage["p2value"] = choice

22 self.storage["p2reveal"] = 1

23 return(2)

24 else:

25 return(0)

26 else:

27 return(-1)

28

29 def check():

5

30 #check to see if both players have revealed answer

31 if self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

32 #If player 1 wins

33 if self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 1:

34 send(100,self.storage["player1"], self.storage["WINNINGS"])

35 return(1)

36 #If player 2 wins

37 elif self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 2:

38 send(100,self.storage["player2"], self.storage["WINNINGS"])

39 return(2)

40 #If no one wins

41 else:

42 send(100,self.storage["player1"], 1000)

43 send(100,self.storage["player2"], 1000)

44 return(0)

45 #if p1 revealed but p2 did not, send money to p1

46 elif self.storage["p1reveal"] == 1 and not self.storage["p2reveal"] == 1:

47 send(100,self.storage["player1"], self.storage["WINNINGS"])

48 return(1)

49 #if p2 revealed but p1 did not, send money to p2

50 elif not self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

51 send(100,self.storage["player2"], self.storage["WINNINGS"])

52 return(2)

53 #if neither p1 nor p2 revealed, keep both of their bets

54 else:

55 return(-1)

2.3 Incentive Compatability

The final key bug to watch out for is incentive incompatibility. There are contract ideas that
must consider user incentives in order for them to run as planned. If I had an escrow contract
incentives must be implemented so both individuals don’t always so they did not receive their
promised service. If I have a game contract where inputs are encrypted, incentives must be
implemented to ensure both players decrypt their responses within a time frame to avoid
cheating. Let’s look and see how our RPS contract holds up with regard to incentives:

1 def check():

2 #check to see if both players have revealed answer

3 if self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

4 #If player 1 wins

5 if self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 1:

6 send(100,self.storage["player1"], self.storage["WINNINGS"])

6

7 return(1)

8 #If player 2 wins

9 elif self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 2:

10 send(100,self.storage["player2"], self.storage["WINNINGS"])

11 return(2)

12 #If no one wins

13 else:

14 send(100,self.storage["player1"], 1000)

15 send(100,self.storage["player2"], 1000)

16 return(0)

17 #if p1 revealed but p2 did not, send money to p1

18 elif self.storage["p1reveal"] == 1 and not self.storage["p2reveal"] == 1:

19 send(100,self.storage["player1"], self.storage["WINNINGS"])

20 return(1)

21 #if p2 revealed but p1 did not, send money to p2

22 elif not self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

23 send(100,self.storage["player2"], self.storage["WINNINGS"])

24 return(2)

25 #if neither p1 nor p2 revealed, keep both of their bets

26 else:

27 return(-1)

Given the version at the end of this section our contract is almost incentive compatible.
Only one party needs to call the check() function in order for the winnings to be fairly
distributed to the actual winner, regardless of who calls. This requires one player to spend
gas to check to see who won, while the other player doesn’t need to spend the same amount.
There is currently no way to require two people to spend equal amount of gas to call one
function. How could this affect the incentives of the contract?

In the next section we will look at how the current block number and the amount of blocks
that have passed affect the security of a contract. We will look to alter our contract further
so if someone doesn’t open (verify) their rock/paper/scissors within a given timeframe (i.e. 5
blocks after they are added to the contract), the contract would, by default, send the money
to the person who did verify their input by the deadline. This incentivizes both users to
verify their inputs before the check() function is called after a random amount of blocks have
been published; if you don’t verify you are guaranteed to lose.

2.4 Original Buggy Rock, Paper, Scissor Contract

1 data winnings_table[3][3]

2

3 def init():

7

4 #If 0, tie

5 #If 1, player 1 wins

6 #If 2, player 2 wins

7

8 #0 = rock

9 #1 = paper

10 #2 = scissors

11

12 self.winnings_table[0][0] = 0

13 self.winnings_table[1][1] = 0

14 self.winnings_table[2][2] = 0

15

16 #Rock beats scissors

17 self.winnings_table[0][2] = 1

18 self.winnings_table[2][0] = 2

19

20 #Scissors beats paper

21 self.winnings_table[2][1] = 1

22 self.winnings_table[1][2] = 2

23

24 #Paper beats rock

25 self.winnings_table[1][0] = 1

26 self.winnings_table[0][1] = 2

27

28 self.storage["MAX_PLAYERS"] = 2

29 self.storage["WINNINGS"] = 0

30

31 def add_player():

32 if not self.storage["player1"]:

33 if msg.value == 1000:

34 self.storage["WINNINGS"] = self.storage["WINNINGS"] + msg.value

35 self.storage["player1"] = msg.sender

36 return(1)

37 return (0)

38 elif not self.storage["player2"]:

39 if msg.value == 1000:

40 self.storage["WINNINGS"] = self.storage["WINNINGS"] + msg.value

41 self.storage["player2"] = msg.sender

42 return(2)

43 return (0)

44 else:

45 return(0)

8

46

47 def input(choice):

48 if self.storage["player1"] == msg.sender:

49 self.storage["p1value"] = choice

50 return(1)

51 elif self.storage["player2"] == msg.sender:

52 self.storage["p2value"] = choice

53 return(2)

54 else:

55 return(0)

56

57 def check():

58 #If player 1 wins

59 if self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 1:

60 send(100,self.storage["player1"], self.storage["WINNINGS"])

61 return(1)

62 #If player 2 wins

63 elif self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 2:

64 send(100,self.storage["player2"], self.storage["WINNINGS"])

65 return(2)

66 #If no one wins

67 else:

68 send(100,self.storage["player1"], self.storage["WINNINGS"]/2)

69 send(100,self.storage["player2"], self.storage["WINNINGS"]/2)

70 return(0)

71

72 def balance_check():

73 log(self.storage["player1"].balance)

74 log(self.storage["player2"].balance)

Implement the changes from each of the aboved sections to have a much stronger contract!

References

[1] Lab virtual machine image. http://www.cs.umd.edu/~elaine/smartcontract/

coursematerial.html.

[2] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.
A programmer’s guide to ethereum and serpent. http://www.cs.umd.edu/~elaine/

smartcontract/coursematerial.html.

9

http://www.cs.umd.edu/~elaine/smartcontract/coursematerial.html
http://www.cs.umd.edu/~elaine/smartcontract/coursematerial.html
http://www.cs.umd.edu/~elaine/smartcontract/coursematerial.html
http://www.cs.umd.edu/~elaine/smartcontract/coursematerial.html

[3] Elaine Shi and Andrew Miller. Undergraduate ethereum lab at mary-
land and insights gained. https://docs.google.com/presentation/d/1esw_

lizWG06zrWaOQKcbwrySM4K9KzmRD3rtBUx0zEw/edit?usp=sharing”, 2015.

10

https://docs.google.com/presentation/d/1esw_lizWG06zrWaOQKcbwrySM4K9KzmRD3rtBUx0zEw/edit?usp=sharing
https://docs.google.com/presentation/d/1esw_lizWG06zrWaOQKcbwrySM4K9KzmRD3rtBUx0zEw/edit?usp=sharing

	Introduction
	Intended audience.
	Applicability of this tutorial.
	Conceptual model for programming smart contracts.
	Accompanying materials.

	A Rock-Paper-Scissors Example
	Corner Cases in Coding State Machines
	Implementing Cryptography
	Incentive Compatability
	Original Buggy Rock, Paper, Scissor Contract

