
Advanced Numerical Linear Algebra Homework 2
AMSC/CMSC 763 Due October 12, 2017

1. We have seen in class that the GMRES algorithm constructs an approxima-
tion xk to the solution of a linear system Ax = b where xk has the form

xk = x0 + Vkyk ,

yk is the solution of a least squares problem

min
y

∥∥∥‖r0‖2e1 − Ĥky
∥∥∥
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e1 is a unit vector of size k + 1, and Ĥk is an upper-Hessenberg matrix with
k + 1 rows and k columns. Show that the residual rk = b − Axk satisfies
‖rk‖2 = hk+1,k[yk]k, which means that once xk is constructed, this residual
norm is available at essentially no cost.
Hint: Derive a QR-factorization of Ĥk that can be used to solve the least squares
problem and that shows the structure of the residual norm.

Problem 2. Let {v1, v2, . . . , vk, vk+1} be generated by the Arnoldi process for
a matrix A, with square Hessenberg matrix Hk.

a. Suppose vk+1 = 0. Show that in this case, the eigenvalues of Hk are eigen-
values of A, and identify the associated eigenvectors.

b. More generally, if vk+1 6= 0, µ is an eigenvalue of Hk and an estimate for an
eigenvector of A is generated in a manner anagous to what is done for part (a),
show that the residual Av−µv is orthogonal to the Krylov subspace Kk(A, v1).

c. What happens to Hk when A is symmetric?

Problem 3. Suppose Au = f is a linear system of equations in which the
coefficient matrix A is symmetric and positive-definite. Let Q = GGT be a
symmetric positive-definite preconditioner; note that no assumption is made
about the structure of G other than that Q admits a factorization of this type.
Given this (formal) factorization, we could apply the unpreconditioned conju-
gate gradient algorithm to

G−1AG−Tv = G−1f , v = GTu.

Use this fact to derive the preconditioned conjugate gradient algorithm (PCG)
given below. This shows that the extra computation required by PCG at each
step is a solution of a system with coefficient matrix Q. This may or may not
depend on the factorization.



The preconditioned conjugate gradient method
Choose u(0), compute r(0) = f −Au(0), solve Qz(0) = r(0), set p(0) = z(0)

for k = 0 until convergence do

αk = 〈z(k), r(k)〉/〈Ap(k),p(k)〉
u(k+1) = u(k) + αkp

(k)

r(k+1) = r(k) − αkAp
(k)

<Test for convergence>
Solve Qz(k+1) = r(k+1)

βk = 〈z(k+1), r(k+1)〉/〈z(k), r(k)〉
p(k+1) = z(k+1) + βkp

(k)

enddo

4. A demo given in class showed the effect damped Jacobi smoothing had on
the discrete one-dimensional diffusion equation.

a. Implement this demo yourself. That is, show that a few steps of damped
Jacobi smoothing makes the error smooth. You can generate the matrix and
right-hand side using the code

e1 = ones(n,1);

h = 1/(n+1);

A = spdiags([-e1 2*e1 -e1], [-1,0,1], n, n)/h;

f = h*e1;

Reasonable choices for n are 31 or 63, but feel free to play with anything you
like. To make the case, start with a random initial value and then plot the error
in one or two figures.

b. Continue this experiment by implementing the two-grid algorithm. This will
require construction of the coarse-grid matrix A2h and the prolongation and
restriction operators, P and R. You can then take one step of the two-grid
algorithm to consist of two smoothing steps, followed by restriction, coarse-grid
correction, and prolongation. Show that this algorithm displays “textbook”
multigrid behavior.


