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Abstract. Simulating compositional multiphase flow in porous media is a challenging task, especially when phase transition
is taken into account. The main problem with phase transition stems from the inconsistency of the primary variables such
as phase pressure and phase saturation, i.e. they become ill-defined when a phase appears or disappears. Recently, a new
approach for handling phase transition has been developed, whereby the system is formulated as a nonlinear complementarity
problem (NCP). Unlike the widely used primary variable switching (PVS) method which requires a drastic reduction of the
time step size when a phase appears or disappears, this approach is more robust and allows for larger time steps. One way to
solve an NCP system is to reformulate the inequality constraints as a non-smooth equation using a complementary function
(C-function). Because of the non-smoothness of the constraint equations, a semi-smooth Newton method needs to be developed.
In this work, we consider two methods for solving NCP systems used to model multiphase flow: (1) a semi-smooth Newton
method for two C-functions: the minimum and the Fischer-Burmeister functions, and (2) a new inexact Newton method based
on the Jacobian smoothing method for a smooth version of the Fischer-Burmeister function. We show that the new method is
robust and efficient for standard benchmark problems as well as for realistic examples with highly heterogeneous media such as
the SPE10 benchmark.
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1. Introduction. Multiphase flow is a critical process in a wide range of hydrodynamic phenomena,
including carbon sequestration, reservoir simulation, and groundwater remediation. For simulation, it would
be ideal to have a complete knowledge of the state and composition of the fluid phases in the flow. However,
this is not an easy task given the complex physics involved. Some of the most important effects that need to
be taken into consideration include capillarity, miscibility, and especially phase transitions. If not handled
correctly, these effects can introduce nonphysical numerical oscillations in computational solutions of the
strongly nonlinear system of partial differential equations.

Phase transitions have posed a major challenge for multiphase, multi-component models since the 1980s.
If not handled correctly, they can cause numerical oscillations in solutions of these models, making such
solutions physically inconsistent and unusable. There have been many attempts to address the problems
with phase transitions and determine the correct local thermodynamic state for compositional multiphase
flow. In general, most of these can be classified into two common classes of methods: flash calculation
[2, 16, 17, 21, 34, 43] and primary variables switching (PVS) [26, 41]. Flash calculation computes the local
thermodynamic state from the overall mass of the individual components. While this method is stable with
regard to determining the thermodynamic state, it tends to be inefficient because it requires solution of a
large nonlinear system of equations at each time step (in addition to solution of the linearized systems)
to recover all the thermodynamic quantities of interest. The second class, PVS, involves adapting the
primary variables to the thermodynamic constraints locally. The idea is that whenever phase transitions
occur, physical variables that are physically inconsistent (indicated by negative saturation, for example) are
switched to well-defined quantities. The governing equations related to those variables are also modified
accordingly. Although this approach is locally more efficient than flash calculations, it suffers from irregular
convergence behavior in the nonlinear solve, which is typically addressed by substantial reduction in time
step size [20]. This feature is not desirable for simulations over a long period of time, usually encountered
in groundwater remediation or transport of nuclides in a nuclear waste repository. In addition to flash
calculations and PVS, there are other formulations to handle phase transitions such as negative saturation
[1], and introduction of persistent primary variables [9, 33, 35].

Recently, a new approach has been developed for handling the phase transitions by formulating the
system of equations as a nonlinear complementarity problem (NCP) [8, 30, 32]. In contrast to PVS, NCP
has the advantage that the set of primary variables is consistent throughout the simulation, and no primary
variable switching is needed. NCP requires a complementary function, referred to as a C-function, employed
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to rewrite the inequality constraints for the thermodynamic state as a non-smooth equation, which requires
a semi-smooth Newton method [3, 37, 38] to solve. Most of the previous work in multiphase flow using the
NCP approach employs the minimum function as the C-function due to its simplicity for implementation
and the fact that it is piecewise linear with respect to the arguments. Even though the semi-smooth Newton
method applied to the NCP using the minimum function as a C-function is observed to have quadratic
convergence for simple problems in porous media (see [8]), we find that it exhibits poor convergence and
even diverges for standard benchmark problems, as well as examples considered in this work. An alternative
to the minimum function is the Fischer-Burmeister function, which has recently been employed as the C-
function for NCP formulation of incompressible two-phase flow in [42]. As we will show, this choice of
C-function can help mitigate the lack of robustness observed in using the Newton-min algorithm for NCP
formulation of compositional two-phase flow with phase transitions. We then draw on this experience and
develop a new method for the nonlinear solve based on a smooth version of the Fischer-Burmeister function.
Our method can be considered a variant of the Jacobian smoothing method summarized in [25]. Compared
to the non-smooth approaches that use the minimum and the Fischer-Burmeister functions, our new method
is more robust and efficient for problems with highly heterogeneous media, and it also scales optimally with
problem size.

We consider a two-phase, two-component system with phase transitions as our model problem. We
describe this model in detail in section 2, and in section 3, we describe the NCP formulation for it. We
briefly review the semi-smooth Newton framework and introduce our new algorithm in section 4. In section 5,
several numerical tests are presented that demonstrate the robustness and scalability of the new algorithm.
Some concluding remarks as well as future work are presented in section 6.

2. Problem Statement.

2.1. Governing Equations. In this work, we consider a simplified two-phase two-component model
with phase transitions. The phases consist of liquid and gas, and the components are water and hydrogen.
We also make the following assumptions: (1) water does not vaporize so the gas phase contains only hydrogen,
and (2) the amount of hydrogen dissolved in the liquid phase is small. For the two components, the mass
conservation equations read

φ
∂(ρwl Sl)

∂t
+∇ · (ρwl ql − jhl ) = 0,(1)

φ
∂(ρhl Sl + ρhgSg)

∂t
+∇ · (ρhl ql + ρhgqg + jhl ) = 0,(2)

where the subscripts l, g denote the liquid and gas phases, and the superscripts w, h denote the water and
hydrogen components, respectively. The porosity of the medium is denoted φ, Sα, qα are the saturation and
velocity of phase α, respectively; ρhl is the dissolved hydrogen mass concentration in the liquid phase; and
jhl is the diffusion flux of hydrogen in the liquid phase. The Darcy velocity qα follows the Darcy-Muskat law

qα = −Kλα∇(Pα − ραg), α = l, g,(3)

where K is the absolute permeability, λα, Pα, and ρα are the mobility, pressure, and density of phase α,
and g is the gravitational acceleration. The mobility λα of phase α is defined as the ratio between the phase
relative permeability krα and the phase viscosity µα: λα = krα/µα. Using Fick’s law, the diffusion flux of
hydrogen in liquid jhl in (1) and (2) can be expressed as

jhl = −φSlDh
l ∇ρhl ,(4)

where Dh
l is the hydrogen molecular diffusion coefficient in liquid. Since we assume incompressibility of the

liquid phase, the mass density of the water component in the liquid phase is constant, i.e. ρwl = ρstdw . To
capture capillarity effects, the jump in the pressure at the interface of the two phases is modeled by the
relation

Pg = Pl + Pc(Sl)(5)

where Pc is the capillary pressure. Additionally, we have the constraints

Sl + Sg = 1.(6)
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To close the model, we also need a set of equations for the thermodynamic equilibrium when the gas phase
is present, i.e. how much hydrogen can dissolve into the liquid phase at a certain pressure. Assuming low
solubility of hydrogen in the liquid phase, Henry’s law can be used to connect the gas pressure Pg and the
dissolved hydrogen mass concentration in liquid ρhl :

ρhl = ChPg,(7)

where Ch = HMh = ρstdw Mh/(MwKh), H is the Henry’s law constant, Kh is a constant specific to the
mixture, and M i, i ∈ {w, h}, is the molar mass of the i-th component. Since we neglect water vapor, we
can apply the ideal gas law for the gas phase. This leads to the relation

ρhg = ρg = CvPg,(8)

where Cv is a constant and Cv = Mh/(RT ); T is the temperature and R the ideal gas constant.

2.2. Relative Permeabilities and Capillary Pressure. We employ the nonlinear Van Genuchten
[40] model for relative permeabilities and capillary pressure:

krl =
√
Sle

(
1−

(
1− S1/m

le

)m)2

, krg =
√

1− Sle
(

1− S1/m
le

)2m

,(9)

Pc = Pr

(
S
−1/m
le − 1

)1/n

,(10)

Sle =
1− Sl

1− Slr − Sgr
, m = 1− 1

n
,(11)

where Pr is the entry pressure. Notice that the function Pc(Sl) in the Van Genuchten model is only defined
for Sl ∈ [Slr, 1− Sgr] and P ′c is unbounded near Slr and 1− Sgr. Thus, it is necessary to modify the model
to limit the growth of P ′c and extend it for Sl ∈ R, since the value of Sl can become larger than 1 − Sgr
or less than Slr during the nonlinear iteration. We use the following regularization as presented in [32]
with parameter ε = 10−5: In this regularization, for the saturation that is outside of the domain, capillary
pressure is computed by a linear extrapolation from the regularization points Slr +O(ε) and 1− Sgr −O(ε)
with the slopes P ′c(Slr +O(ε)) and P ′c(1− Sgr −O(ε)), respectively.

2.3. Primary Variables. There are many ways to choose a set of primary variables, depending on
the problem formulation and applications. In our model example, a convenient choice is the liquid pressure,
liquid saturation, and the concentration of hydrogen in the liquid phase. We then have our solution vector
u = {Pl, Sl, ρhl }. Unlike in other methods such as primary variable switching, for NCP, the choice of primary
variables is fixed throughout the simulation.

3. Nonlinear Complementarity Problem. In its simplest form, a nonlinear complementarity prob-
lem with respect to a smooth function f : RN 7→ RN is to find a vector u ∈ RN such that

u ≥ 0, f(u) ≥ 0, uT f(u) = 0,(12)

A slightly more general form of the last equation in (12) reads

g(u)T f(u) = 0,(13)

where g : RN → RN is another smooth function. As we have mentioned in section 2, for the solution of (1)
and (2) to be valid, the pressure, saturation, and hydrogen concentration in the liquid phase must satisfy
the constraints in (6) and (7). These conditions can be reformulated as an NCP as follows:

1− Sl ≥ 0, ChPg − ρhl ≥ 0, (1− Sl)(ChPg − ρhl ) = 0,(14)

where u =
(
Pl Sl ρhl

)T
, and the functions in (13) are g(u) = 1 − Sl, f(u) = ChPg − ρhl . A very popular

approach to solve (14) is to transform it into a semi-smooth nonlinear equation via a complementarity
function (also called C-function) Φ(a, b) : R2 → R, which satisfies

Φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.(15)
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We can extend the definition of Φ (15) from R2 to RN , where N is also the number of elements in the mesh,
by applying it (15) componentwise to 1− Sl and ChPg − ρhl and obtain the nonlinear system

Θ(u) =


Φ(1− (Sl)1, (ChPg − ρhl )1)
Φ(1− (Sl)2, (ChPg − ρhl )2)

· · ·
Φ(1− (Sl)N , (ChPg − ρhl )N )

 .(16)

Then, solving the NCP problem in (14) is equivalent to solving Θ(u) = 0. As discussed in the next section,
combining this complementarity condition with the discrete PDEs enables use of a nonlinear solution algo-
rithm that automatically enforces the constraints (6)-(7). There are many examples of C-functions [25]. In
this work, we focus on two popular choices

Φmin(a, b) = min(a, b)(17)

ΦFB(a, b) =
√
a2 + b2 − (a+ b) (Fischer-Burmeister)(18)

The minimum function is convenient because it is piecewise linear with respect to the variables a and b,
which simplifies the computation of the Jacobian in each nonlinear iteration [30]. When the gas phase is not
present, (17) reduces to 1 − Sl = 0. When the gas phase appears, 1 − Sl > 0 and the constraint equation
is governed by Henry’s law (7). Recently, the Fischer-Burmeister function has been shown to have good
performance for the case of incompressible two-phase flow [42].

Although we do not employ any line search strategy in this work, we note that compared to the Fischer-
Burmeister function, the minimum function is less useful with respect to globalization with line search
strategies [25]. As shown and discussed in [5, 6, 7], global semi-smooth Newton methods may diverge even
for linear C-functions if the starting point is not close enough to a solution. In global semi-smooth Newton
approaches, this can be handled using line search, in which a merit function is used to enhance robustness by
evaluating the quality of new iterates. In this scenario, it is desirable for the natural merit function Ψ = ‖Φ‖2
to be smooth because the search direction at each nonlinear iteration is usually chosen based on the derivative
of Ψ [29]. The merit function associated with the minimum function Ψmin = ‖Φmin(a, b)‖2, however, does not

satisfy this condition. In contrast, the Fischer-Burmeister merit function ΨFB = ‖ΦFB(a, b)‖2 is continuously
differentiable as observed in [24].

4. Solution Algorithm. We consider solving the coupled system consisting of (1), (2), and (14) fully
implicitly. We use a cell-centered finite volume method for spatial discretization, as it is a natural way
to preserve the mass conservation property of the balance (1) and (2). In addition, it can deal with the
case of discontinuous permeability coefficients, and it is relatively straightforward to implement. For the
time domain, we employ the backward Euler method to avoid a CFL stability restriction on the time step.
Because this method is unconditionally stable, it also allows us to experiment with variable time stepping,
which can significantly reduce execution time.

4.1. Semi-smooth Newton Method. We want to solve the system R(u) = 0 where R(u) is the
residual function given by

R(u) =

{
H(u) (from the PDEs)

Θ(u) (from the constraints)
(19)

This is a system of 3N equations and 3N unknowns, where N is the number of elements in the mesh. A
standard approach for solving nonlinear systems of equations is Newton’s method, which requires solution
of a linear system at each iteration k:

∂R

∂u

∣∣∣
u=uk

δu = −R(uk).(20)

This method requires that the Jacobian ∂R/∂u be defined everywhere. In the NCP formulation, the con-
straints Θ are not differentiable when there is phase transition as the solution changes from satisfying
1 − Sl = 0 to ChPg − ρhl = 0. To address this, we will consider a semi-smooth Newton method, which is



SEMI-SMOOTH NEWTON METHODS FOR MULTIPHASE FLOW IN POROUS MEDIA 5

similar to Newton’s method, except the derivative Θ′ is replaced by a member of the subdifferential ∂Θ when
Θ is not differentiable. Let F : Rn 7→ Rn be a locally Lipschitz-continuous function and DF be the set where
F is differentiable; the B-subdifferential of F at x is defined as the set

∂BF (x) := {G ∈ Rn×n : ∃ xk ∈ DF with xk → x,∇F (xk)→ G} .

Below is the algorithm for the general semi-smooth Newton method (see [25]).

Algorithm 1 General semi-Smooth Newton method.

while k < max iter and res > tol do
(1) Given u0, k = 0
(2) Select an element Jk ∈ ∂BΘ(uk)
(3) Solve the system(
H ′(uk)
Jk(uk)

)
4 uk =

(
−H(uk)
−Θ(uk)

)
(4) Update uk+1: uk+1 = uk +4uk

To compute Jk in the algorithm above, one can use an active set strategy [27]. For multiphase flow with
phase appearance and disappearance, the idea is to define the set of indices for the cells in which the gas
phase is present (see [8, 30]). Let Ak := {j : 1− (Sl)j ≥ (ChPg−ρhl )j}, Ik := {j : 1− (Sl)j < (ChPg−ρhl )j}.
Then for the minimum function, the jth row of Jk is equal to

∂

∂u
a(u)j if j ∈ Ik

∂

∂u
b(u)j if j ∈ Ak

(21)

where a(u)j = 1 − (Sl)j and b(u)j = (ChPg − ρhl )j . For the Fischer-Burmeister function, we can compute
the jth row of Jk as follows:

1√
a(u)2

j + b(u)2
j

(
a(u)j

∂

∂u
a(u)j + b(u)j

∂

∂u
b(u)j

)
−
( ∂
∂u
a(u)j +

∂

∂u
b(u)j

)
if a(u)2

j + b(u)2
j 6= 0

(αi − 1)
∂

∂u
a(u)j + (βi − 1)

∂

∂u
b(u)j otherwise

(22)

where for all i such that a(u)2
j+b(u)2

j = 0, αi and βi are arbitrary nonnegative constants satisfying α2
i+β

2
i = 1.

For a more complete treatment of semi-smooth Newton methods, we refer to [25].

4.2. Jacobian Smoothing Method. An alternative to the semi-smooth approach is to employ a
smooth approximation to the non-smooth function Θ. The idea was originally developed in the context of
variational inequalities [14, 15] and generalized to more general nonlinearities and infinite dimensions in [13].
Let G : Rn × R+ 7→ Rn such that for any τ > 0, G(·, τ) is continuously differentiable on Rn and

‖Θ(u)−G(u, τ)‖ → 0, as τ → 0.(23)

Then, given a sequence τk, k = 0, 1, 2, ..., we can solve the system in (19) inexactly using G′(uk, τk) as an
approximation to the generalized Jacobian Jk = ∂BΘ(uk). In this work, we explore a smooth approximation
to the Fischer-Burmeister functions given by

GFB(u, τ) =
√
a2 + b2 + 2τ − (a+ b)(24)

The complete algorithm is as follows:
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Algorithm 2 Jacobian Smoothing Method.

while k < max iter and res > tol do
(1) Given u0, k = 0, and τ0

(2) Solve the system(
H ′(uk)

G′(uk, τk)

)
4 uk =

(
−H(uk)
−Θ(uk)

)
(3) Update the smoothing parameter τ
τk+1 = βτk for β ∈ (0, 1)
(4) Update uk+1

uk+1 = uk +4uk

There also exist smooth approximations to the minimum function. In particular, we experimented with
the Chen-Harker-Kanzow-Smale smoothing [12, 28],

Gmin(u, τ) = (a+ b)−
√

(a− b)2 + 4τ .(25)

However, in our experience, this smooth version of the minimum function does not improve the convergence
of the semi-smooth Newton’s method significantly, and we do not include the results here.

4.3. Linear System. Assuming that each physical variable is ordered lexicographically, each step of
the nonlinear iteration (step 3 in Algorithm 1 and step 2 in Algorithm 2) requires solution of a large sparse,
non-symmetric, indefinite linear system of the formA11 A12 A13

A21 A22 A23

A31 A32 A33

u1

u2

u3

 =

f1

f2

f3

 .(26)

where u1, u2, u3 are the corrections to Sl, Pl, ρ
h
l , respectively. The matrices in the first two rows are the

discretized version of the linearized operators from the PDEs, and the last row corresponds to the discrete
derivative of the complementarity constraint equation introduced in (16). Iterative methods such as GMRES
[39] are the only viable option to solve the system above, and preconditioning is critical for fast convergence.
Here, all of our experiments use GMRES preconditioned with hypreMGR (see [11]), an AMG solver and
preconditioner based on multigrid reduction and designed for systems of PDEs. Unlike ILU preconditioners in
which one only needs to specify the level of fill (in ILU(k)) or the threshold tolerance (in ILU(t)), hypreMGR
requires extra information regarding the block structure of the system and the order of reduction.

There exists a small but important difference in the structure of the matrices A created using the
Jacobian smoothing method and the semi-smooth Newton methods. For the semi-smooth Newton methods
with an active set strategy, the diagonal of the block A33 contains zeros for the cells that are devoid of the
gas phase. In contrast, for τ > 0, the diagonal of the block A33 is guaranteed to be nonzero for the Jacobian
smoothing method regardless of the existence of phase transitions. Thus, the Jacobian smoothing method
requires one fewer reduction step for hypreMGR, compared to semi-smooth Newton approaches, which leads
to a decrease in both the number of GMRES iterations and execution time, as will become evident from the
results presented in section 5.3.

5. Numerical Results. In this section, we describe the results of numerical experiments for solving
the NCP systems using both the semi-smooth Newton’s approach using the minimum and the Fischer-
Burmeister functions, and the Jacobian smoothing method with the smooth Fischer-Burmeister function
for the NCP formulation. All of these methods are implemented in Amanzi, a parallel open-source multi-
physics C++ code developed as a part of the ASCEM project [4]. Although Amanzi was first designed for
simulation of subsurface flow and reactive transport, its modular framework and concept of process kernels
[22] allow new physics to be added relatively easily for other applications. The compositional two-phase flow
simulator employed in this work is one such example. Amanzi works on a variety of platforms, from laptops
to supercomputers. It also leverages several popular packages for mesh infrastructure and solvers through a
unified input file. GMRES is also provided within Amanzi while hypreMGR is employed through HYPRE.
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Fig. 1: Core domain for the gas infiltration example.

This section has three parts. In the first part, we show results using two benchmark problems that
demonstrate the effectiveness of the NCP approach in handling phase appearance and disappearance. In
the second part, we report the results for both two- and three-dimensional cases with highly heterogeneous
media. In the last part, we perform a scalability study of the algorithms. Parallel test cases are run on
Syrah, a Cray system with 5,184 Intel Xeon E5-2670 cores at the Lawrence Livermore National Laboratory
Computing Center. Amanzi and other libraries are compiled with OpenMPI 1.6.5 and gcc-4.9.2.

For all the simulations presented here, the convergence tolerance for the nonlinear solve is ||F (x)|| ≤ 10−6,
and the linear tolerance for GMRES is ||Jδuk − F (uk)|| ≤ 10−12||F (uk)||, which is the default in Amanzi.
Depending on the performance of the nonlinear solver, a heuristic for choosing the time step is used: if the
number of nonlinear steps (NS) required at a given time are less than 10, then the next time step dtnext
is doubled, dtnext = 2 · dt; if NS ∈ [11, 15], then the time step is kept fixed, dtnext = dt; and if NS is
greater than 15, then the time step is halved dtnext = dt/2. The maximum number of nonlinear iterations
is max iter = 20.

5.1. Benchmark problems. These tests are derived from the MoMaS benchmark project [10], which
is designed to evaluate the effectiveness of different approaches for handling gas phase appearance and
disappearance. Pure hydrogen is injected into a two-dimensional homogeneous porous domain Ω, which was
initially 100% saturated with pure water. The domain is a rectangle of size 200m×20m, and it is discretized
only in the horizontal direction, leading to a quasi one-dimensional problem. There are three types of
boundaries : Γin on the left side is the inflow boundary; Γout on the right side is the outflow boundary; and
Γimp at the top and bottom is the impervious boundary (see Figure 1). There are no source terms inside
the domain, and denoting ψw = ρwl Kλl∇Pl − jhl and ψh = ρhl Kλl∇Pl + ρhgKλg∇Pg + jhl , the boundary
conditions are as follows

• No flux on Γimp

ψw · ν = 0 and ψh · ν = 0(27)

• Injection of hydrogen on the inlet Γin

ψw · ν = 0 and ψh · ν = 5.57× 10−6 kg/m2/year(28)

• Fixed liquid saturation and pressure on the outlet

Pl = 106 Pa, Sl = 1, ρhl = 0(29)

Initial conditions are uniform throughout the domain, corresponding to a stationary state of saturated liquid
and no hydrogen injection,

Pl = 106 Pa, Sl = 1, ρhl = 0.(30)

The values of the physical parameters are given in Table 1.
Figure 2 shows the Van Genuchten capillary pressure curve for different values of the entry pressure Pr.

These parameter values, along with others in the Van Genuchten model, depend on the porous material.
For example, the MoMaS benchmark problem (test case 1 in [10]) uses Pr = 2 · 106 for a very dense rock
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K 5× 10−20 m2

φ 0.15

Dh
l 3× 10−9 m2/s

µl 1× 10−9 Pa s

µg 9× 10−6 Pa s

H 7.65× 10−6 mol/Pa/m3

Mh 2× 10−3 kg/mol

Mw 1× 10−2 kg/mol

ρwl 103 kg/m3

Table 1: Parameter Values Fig. 2: Capillary pressure curves for different entry pressure Pr.

End Time (years)
min FB Smooth FB

TS NS TS NS TS NS

105 5 (0) 35 (0) 5 (0) 35 (0) 5 (0) 36 (0)

5 · 105 10 (0) 80 (0) 10 (0) 80 (0) 8 (0) 63 (0)

Table 2: Performance of the nonlinear solver for the capillary pressure model with Pr = 2× 106 Pa with
mesh size of 200.

with extremely low permeability of K = 5 · 10−20. In other applications including CO2 sequestration and
reservoir simulation, the material is much more permeable and Pr = 2 · 103 would produce the capillary
pressure curves typically used (see [19, 36]). Other parameters for the Van Genuchten model are Slr = 0.4,
Sgr = 0, and n = 1.49. The effect of capillary pressure on the solution is shown in Figure 3, in which the
gas saturation throughout the domain is plotted at 100,000 years for Pr = 2 · 106 and Pr = 2 · 103. The
smaller Pr is, the steeper the curve becomes near Sl = 0, and that also makes the problem more difficult to
solve. For the MoMaS benchmark case with Pr = 2 · 106, the gas saturation curve exhibits a more gradual
transition from the unsaturated to the saturated region. In contrast, for the difficult case of Pr = 2 · 103 Pa,
the gas saturation changes very quickly both at the injection point and at the interface with the saturated
region. We note that the simulation results in Figure 3 match well with those in [23, 32]. A comparison of
the performance of the three solution methods is shown in Tables 2 and 3. TS, NS denote the total number of
successful time steps and nonlinear iterations, respectively, and the numbers in parentheses are the number
of failed time steps and nonlinear iterations. Failed time steps are those in which the method diverges or does
not converge within the allowed maximum number of iterations; failed nonlinear iterations correspond to the
iterations spent during the failed time steps. For both of these benchmark problems, an initial smoothing
parameter τ = 10−6 and a reduction ratio β = 0.1 are used for the smooth Fischer-Burmeister approach.

For the MoMaS gas injection benchmark problem with Pr = 2 · 106 Pa, the results in Table 2 show that
for the nonlinear solve, the Fischer-Burmeister function (without smoothing) does not show any improvement
over the minimum function. It registers the same numbers of time steps needed to run the simulation both to
105 and to 5 ·105 years. In contrast, the smooth Fischer-Burmeister function achieves the same performance
up to T = 105 years, and it reduces both the number of time steps and nonlinear iterations by about 20% for
the full simulation. This suggests that the smooth Fischer-Burmeister function is better for simulating long
time periods, when the gas phase infiltrates a larger portion of the domain. The second example is exactly
the same as the first example, except that we use the entry pressure Pr = 2 · 103 for the Van Genuchten
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Fig. 3: Gas infiltration into the domain for two different capillary pressure curves after 100,000 years.

Mesh size
min FB Smooth FB

TS NS TS NS TS NS

200 37 (20) 487 (195) 5 (0) 41 (0) 5 (0) 38 (0)

400 59 (48) 949 (440) 6 (0) 59 (0) 5 (0) 42 (0)

Table 3: Performance of the nonlinear solver for the highly nonlinear capillary pressure model with
Pr = 2× 103 Pa after 100,000 years.

model, which makes the problem more difficult to solve. This example the illustrates the effectiveness of
the smooth Fischer-Burmeister function in handling phase transitions for highly nonlinear problems. We
compare the performance of the three different strategies and show the results in Table 3. The semi-smooth
Newton method with the minimum function struggles to converge for many time steps. It requires 37 and
59 time steps in total, with 20 and 48 failed time steps for mesh sizes of 200 and 400, respectively. Use of
the Fischer-Burmeister function reduces the number of time steps by a factor of seven, and it also requires
less than 10% number of nonlinear iterations. This means that on average, we can take about seven times
larger time step and achieve approximately 90% decrease in run time with the Fischer-Burmeister function.

The approach using the smooth Fischer-Burmeister function registers about the same number of time
steps as the approach using the standard Fischer-Burmeister function and it furthers decreases the number
of time steps by 7% for the mesh size of 200. For the larger mesh of 400, however, the smooth Fischer-
Burmeister variant shows a large improvement over the standard Fischer-Burmeister approach, requiring
29% fewer nonlinear iterations.

5.2. Problems with highly heterogeneous media. Here, we describe numerical experiments on
two problems with highly heterogeneous permeability: (1) a modified two-dimensional SPE-10 problem, and
(2) a three-dimensional problem. The permeability fields for these problems are shown in Figures 4a and 4b.
In both cases, the entry pressure for the Van Genuchten capillary pressure is chosen as Pr = 2× 103, which
corresponds to the difficult nonlinear case for the benchmark problem of section 5.1. For the first case, we
modify the two-dimensional SPE10 problem [18] by scaling the permeability field by a constant factor of
10−5 to make the porous medium more dense. The domain is a rectangle of size 762m × 15.24m. Pure
hydrogen is injected on the left side Γin = {0} × [0, 15.24]: ψw · ν = 0 and ψh · ν = 5.57× 10−2kg/m2/year,
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(a) Modified two-dimensional SPE10 problem. (b) Three-dimensional problem with random
permeability.

Fig. 4: Heterogeneous Problems.

Two-dimensional SPE10 Three-dimensional problem

C-function FB Smooth FB FB Smooth FB

Number of time steps 60 (7) 37 (4) 13 (4) 8 (3)

Average time step size (days) 19.3 31.3 151.8 250.0

Total nonlinear iterations 856 (147) 530 (84) 202 (84) 135 (63)

Execution time (s) 941.6 566.8 972.6 620.3

Table 4: Performance comparison for heterogeneous problems.

and a Dirichlet boundary condition is given on Γout = {762} × [0, 15.24]: Pl = 106 Pa, Sl = 1, and ρhl = 0.
The upper and lower boundary is impervious, i.e. ψw · ν = 0 and ψh · ν = 0. Initial conditions are Pl = 106

Pa, Sl = 1, and ρhl = 0 for the whole domain. For the spatial discretization, we use a 100 × 20 mesh. The
initial time step dt = 20 days and the end time is Tfinal = 1160 days. The initial smoothing parameter for
the smooth Fischer-Burmeister function is τ = 10−6.

In the second example, the domain is a box of size 50m × 30m × 20m. The porosity and permeability
fields are random, generated by a geostatistic model using the open-source code MRST [31]. The porosity
has a range of [0.002, 0.1] and the permeability varies from 1.377 · 10−20 to 2.117 · 10−15. Pure hydrogen is
injected through the boundary at a corner: ψw · ν = 0 and ψh · ν = 5.57× 10−2kg/m2/year, and a Dirichlet
boundary condition is chosen on the opposite corner: Pl = 106 Pa, Sl = 1, and ρhl = 0. The rest of the
boundary is impervious, i.e. ψw ·ν = 0 and ψh ·ν = 0. Initial conditions are Pl = 106 Pa, Sl = 1, and ρhl = 0
for the whole domain. For the spatial discretization, we use a uniform 50× 30× 20 mesh. The initial time
step dt = 200 days and the end time is Tfinal = 2000 days. The initial smoothing parameter for the smooth
Fischer-Burmeister function is τ = 10−4.

For both of these problems, the semi-smooth Newton approach using the minimum function fails to
converge for many time steps, and dt becomes too small to perform the full simulation. Thus, only the
results for the standard Fischer-Burmeister function and the smooth variant are reported in Table 4. Again,
the numbers in parentheses are for the failed time steps and nonlinear iterations. The Jacobian smoothing
method combined with the smooth Fischer-Burmeister function is more robust than the semi-smooth Newton
approach with the standard Fischer-Burmeister function, as demonstrated by the reduction in the number
successful and failed time steps. For example, in the two-dimensional SPE10 problem, the former requires
only 37 successful time steps and registers 4 failed time steps, as opposed to 60 successful and 7 failed time
steps of the latter. In terms of performance, the Jacobian smoothing method combined with the smooth
Fischer-Burmeister function is clearly better as it helps decrease the number of nonlinear iterations and
execution time by 34-40% approximately for both the two-dimensional and three-dimensional problems.

5.3. Scaling Results. To study parallel performance, we use the same setup as for the three-dimensional
case with highly heterogeneous media considered in section 5.2. Parallel tests are run on Syrah, a Cray sys-
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Fig. 5: Strong scaling for the three-dimensional heterogeneous problem. The total runtime for the
simulation, the setup, and solve time for the linear solver are reported.

tem with 5,184 Intel Xeon E5-2670 cores at the Lawrence Livermore National Laboratory Computing Center.
Amanzi and other libraries are compiled with OpenMPI 1.6.5 and gcc-4.9.2. For strong scaling, the mesh
size is fixed at 200×120×80, and the problem has 5.76 million unknowns in total. We choose an initial time
step of dt = 2 days and stop the simulation after 20 days. For weak scalability, the number of processors
is increased in proportion to the problem size. We use meshes of size 50 × 30 × 20, 100 × 60 × 40, and
200× 120× 80 with 2, 16, and 128 processors, respectively. The initial time step is set to dt = 2 days for all
the mesh sizes and the simulation is stopped at T = 200 days. For both cases, the entry pressure is set at
Pr = 2 × 103. The results reported in Figure 5 show that the Jacobian smoothing method, combined with
GMRES preconditioned by hypreMGR achieves near optimal strong scalability on 8 to 128 processors for
the total time needed to run the whole simulation. The slight deviation from the ideal performance at 64
and 128 processors results from the decrease in parallel performance of the setup phase of hypreMGR, which
has been observed in [11].

For weak scaling, a comparison between the Jacobian smoothing method using the smooth Fischer-
Burmeister function and the semi-smooth Newton approach with the standard Fischer-Burmeister function
is shown in Tables 5 and 6. For the semi-smooth Newton method using the standard Fischer-Burmeister
function, the simulation does not finish within the 4-hour limit of run time on the cluster. Thus, we only
report the solver statistics up to T = 38 days when the simulation terminates. As the mesh is refined, the
Jacobian smoothing method is clearly more robust and efficient than the semi-smooth Newton method using
the standard Fischer-Burmeister function. Not only does it reduce the number of nonlinear iterations, it
also helps improve the performance of the linear solver as indicated by smaller number of linear iterations.
The execution time is significantly reduced as a consequence.

6. Conclusions. In this work, we have developed a new Jacobian smoothing method based on the
smooth Fischer-Burmeister function to solve the discrete nonlinear systems resulting from the the fully
implicit discretization of the NCP formulation for compositional multiphase flow in porous media with
phase transitions. Additionally, we performed various numerical experiments to compare our method with
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Number of processors 2 16 128

Mesh size 50× 30× 20 100× 60× 40 200× 120× 80

Initial smoothing parameter τ 10−6 10−6 10−5

Average step size (days) 28.6 28.6 25.0

Number of time steps 7 7 8

Average nonlinear iterations 5.1 6.6 8.9

Average linear iterations 10.7 13.5 17.4

Execution time 122 (s) 286 (s) 995 (s)

Table 5: Weak scaling performance of the Jacobian smoothing method.

Number of processors 2 16 128

Mesh size 50× 30× 20 100× 60× 40 200× 120× 80

Average step size (days) 28.6 25.0 3.45*

Number of time steps 7 8 11 (2)*

Average nonlinear iterations 4.7 6.6 11.1*

Average linear iterations 12.7 22.0 28.5*

Execution time 463 (s) 1623 (s) > 4 hours

Table 6: Weak scaling performance of the semi-smooth Newton approach using the standard
Fischer-Burmeister function.

a semi-smooth Newton approach for two choices of C-function: the minimum and the Fischer-Burmeister
functions. The results demonstrate that this method is significantly more robust and efficient with respect
to the run time and number of nonlinear iterations. Unlike the semi-smooth Newton method using the
minimum function, the Jacobian smoothing approach converges in all examples. Moreover, depending on
the problem, it also reduces the number of nonlinear iterations and execution time by 34-40% compared to
the semi-smooth Newton method using the standard Fischer-Burmeister function.
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[8] I. Ben Gharbia and J. Jaffré. Gas phase appearance and disappearance as a problem with complementarity constraints.
Mathematics and Computers in Simulation, 99(0):28 – 36, 2014.
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