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COLLOCATION METHODS FOR EXPLORING PERTURBATIONS
IN LINEAR STABILITY ANALYSIS\ast 

HOWARD C. ELMAN\dagger AND DAVID J. SILVESTER\ddagger 

Abstract. Eigenvalue analysis is a well-established tool for stability analysis of dynamical
systems. However, there are situations where eigenvalues miss some important features of physical
models. For example, in models of incompressible fluid dynamics, there are examples where linear
stability analysis predicts stability but transient simulations exhibit significant growth of infinitesimal
perturbations. This behavior can be predicted by pseudospectral analysis. In this study, we show
that an approach similar to pseudospectral analysis can be performed inexpensively using stochastic
collocation methods and the results can be used to provide quantitative information about instability.
In addition, we demonstrate that the results of the perturbation analysis provide insight into the
behavior of unsteady flow simulations.
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1. Introduction. This study is concerned with a refined understanding of the
classic problem of stability of dynamical systems. Let

(1.1)
\partial u

\partial t
= f(u, t)

represent a dynamical system, where u : \BbbR d \times [0, T ] \rightarrow \BbbR , f : \BbbR \times [0, T ] \rightarrow \BbbR , and let
u(s) denote a steady solution to (1.1), i.e.,

\partial u(s)

\partial t
= f(u(s), t) = 0 for all t.

Let \gamma = \gamma (x, 0) represent a small perturbation of u(s). Suppose the perturbed quan-
tity \^u(x, 0) := u(s)(x) + \gamma (x, 0) is taken as an initial condition for (1.1), for which
integration leads to a solution \^u(x, t) = u(s)(x) + \gamma (x, t). If \^u(x, t) reverts to u(s)(x)
(\gamma (x, t) \rightarrow 0) as t increases, then the steady solution is said to be stable; otherwise it
is unstable. In typical applications, f(u, t) = f\alpha (u, t) depends on a parameter \alpha , as

does the resulting steady solution u
(s)
\alpha , and we are interested in the set of values of \alpha 

for which u
(s)
\alpha is stable.

Spatial discretization of (1.1) leads to a discrete version of it, which has the form

(1.2) M
\partial u

\partial t
= f(u, t),
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where u and f(u, t) are finite-dimensional vectors of size nu, the size of the spatial
discretization. For finite element discretization, M is a mass matrix. As above, we
wish to know whether a steady solution u(s) to (1.2) is stable.

Linear stability analysis addresses this question by examining the eigenvalues of
the algebraic system

(1.3) Jv = \lambda Mv,

where J = \partial \bff 
\partial \bfu (u

(s)) is the Jacobian matrix of f with respect to u, evaluated at u(s);

see, for example, [13, Chap. 1]. A necessary condition for stability of u(s) is that all
eigenvalues \lambda of (1.3) have negative real part. If any eigenvalue has positive real part,
then there exists an arbitrarily small perturbation \bfitgamma such that if u(s) + \bfitgamma is used as
an initial condition for (1.2), the integrated solution will not revert to u(s).

A problematic aspect of linear stability analysis is that it fails to account for
transient effects that may take a long time to resolve. In particular, it may happen
that the solution of the system (1.1) with initial condition u(x, 0) = u(s)(x) + \gamma (x),
consisting of a small perturbation of a steady solution, exhibits large growth over a
significant period of time even if u(s) is linearly stable. This is discussed for models
of flow in [21, sects. 2.3 and 4.1], [23, sects. 20 and 22]. It can be explained using
pseudospectra: the \epsilon -pseudospectrum of the Jacobian matrix, defined for M = I in
(1.3), is the set of eigenvalues of J + E for \| E\| \leq \epsilon . (A generalization to forms of
M considered in the present study is discussed in [11].) Transient growth is exhibited
when some elements of this set protrude into the right-half of the complex plane for
small \epsilon [23].

Our aim in this study is to develop and explore a simple procedure to study the
sensitivity of the eigenvalues of (1.3) when the dynamical system comes from models of
incompressible flow. As observed in [11], it is not practical to compute pseudospectra
for the large-scale systems that arise in this setting. This difficulty is addressed in [11]
by projecting such systems into invariant subspaces of (shifted versions of) J - 1M ,
which have smaller dimension and for which computation of pseudospectra is feasible.
It is shown in [11] that these pseudospectra estimates provide interior bounds on
pseudospectra of (1.3) as well as insight into transient growth of solutions.

In this work, we develop a complementary approach to study the sensitivity of
the eigenvalues of (1.3) for models of incompressible flow. The methodology derives
from a two-fold procedure:

1. Introduce a simple way to construct perturbed versions of the eigenvalue
problem (1.3) using spatial perturbations that depend on a finite number of
parameters.

2. Approximate the critical eigenvalues of the perturbed problem using a surro-
gate function defined by interpolation.

This requires the solution of a relatively small number of perturbed eigenvalue prob-
lems determined from a special set of parameter values, using sparse-grid methods
[1, 22]. The surrogate function interpolates the critical eigenvalues obtained from
these eigenvalue problems and provides a means of approximating the critical eigen-
values for an additional set of perturbed problems. The surrogate function is very
inexpensive to evaluate. As a result, it is possible to generate many samples of (ap-
proximate) eigenvalues in order to gain an understanding of the effects of perturbation.
We apply this technique to the eigenvalue problems arising from stability analysis of
the incompressible Navier--Stokes equations.

An outline of the remainder of the paper is as follows. In section 2, we de-
scribe the collocation strategy and show in detail how it is developed for the Navier--
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Stokes equations. In section 3, we describe two benchmark problems we use to test
the methodology and show how the perturbed eigenvalues behave with respect to
Reynolds numbers and sizes of perturbation, and in section 4, we demonstrate that
the behavior of perturbed eigenvalues predicts the behavior of transient solutions ob-
tained from perturbed flow conditions. Finally, in section 5, we make some concluding
remarks.

2. Approach. In this section, we describe the methodology we will use to ex-
plore the sensitivity to perturbation of the eigenvalue problem (1.3), which is based
on sampling. We first outline the approach in general terms in section 2.1, and then
we continue in section 2.2 with a more detailed statement of how the ideas are applied
to a specific benchmark problem, the incompressible Navier--Stokes equations.

2.1. General approach. Let u(s) be a steady solution to (1.2), and let \bfitdelta be
a small perturbation of u(s). We will specify \bfitdelta = \bfitdelta (\bfitxi ) to depend on a vector of
parameters \bfitxi := (\xi 1, \xi 2, . . . , \xi m)T with \bfitdelta (0) = 0, and we will explore a perturbed
eigenvalue problem

(2.1) \^J(u(s), \bfitdelta (\bfitxi ))v(\bfitxi ) = \^\lambda (\bfitxi )Mv(\bfitxi ),

with the aim of understanding the impact of the perturbation \bfitdelta on the eigenvalues
\{ \^\lambda \} . One way to define \^J is to evaluate the Jacobian at the perturbed velocity,
\^J(u(s), \bfitdelta ) := J(u(s) + \bfitdelta ). In this study, which concerns the incompressible Navier--
Stokes equations, we will insist that the perturbation is not dissipative. Details on the
structure of the perturbation and its parameter dependence are given in section 2.2.

Remark 2.1. We call attention here to an important aspect of the issue under
study. Classic linear stability analysis concerns the sensitivity of the steady solution
u(s) to perturbation. Our (different) concern here, like that of [23], is the sensitivity of
the eigenvalues \lambda to perturbation, and in particular whether the conclusions reached
from stability analysis predict behavior. To highlight this distinction, we use different
symbols for perturbation depending on context: \gamma is used for perturbations arising in
linear stability analysis, and \delta for perturbations of eigenvalue problems as in (2.1).

Given the eigenvalue problem (2.1), let

(2.2) g(\bfitxi ) := rightmost eigenvalue of (2.1),

where, if there is a complex conjugate pair of rightmost eigenvalues, g(\bfitxi ) can be
taken to be the eigenvalue with positive imaginary part. One way to explore the
sensitivity of (1.3) is by sampling \bfitxi , that is, to evaluate g(\bfitxi ) for a large set of sample
values of \bfitxi . If this function is very sensitive, that is, if small changes in \bfitdelta (\bfitxi ) lead
to large changes in g(\bfitxi ), then linear stability analysis may not provide an accurate
assessment of stability; conversely, if g is not sensitive to perturbation, then linear
stability analysis is likely to yield insight.

The point of view here is that the study of perturbation is done by sampling a
large number of nearby problems. A potential downside is that this approach requires
the solution of many eigenvalue problems (2.1), one for each choice of \bfitxi and resulting
\bfitdelta (\bfitxi ), which tends to incur a high computational cost. To reduce this expense, instead
of evaluating the function of (2.2) (by solving an eigenvalue problem), we will replace
g(\bfitxi ) with an approximation, a surrogate function g(I)(\bfitxi ), which is inexpensive to
compute and therefore can be evaluated cheaply for many samples of \bfitxi . For this, we
will use the method of collocation designed to construct approximations to functions
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on high-dimensional spaces [1, 22]. This entails evaluation of g(\bfitxi ) at a relatively small

number of special points, \{ \bfitxi (1), \bfitxi (2), . . . , \bfitxi (n\bfitxi )\} . The surrogate function is then taken
to be the polynomial interpolant of g,

(2.3) g(I)(\bfitxi ) :=

n\bfitxi \sum 
k=1

g(\bfitxi (k)) \ell k(\bfitxi ),

where \{ \ell k(\bfitxi )\} are multidimensional Lagrange interpolation polynomials,

\ell k(\bfitxi 
(\ell )) = \delta k\ell , 1 \leq k, \ell \leq m.

For the interpolation points, we use sparse grids derived from the extrema of one-
dimensional Chebyshev polynomials [1].

Remark 2.2. It might happen that there are multiple eigenvalues of (1.3) with
the same rightmost real part and different imaginary parts. In this case, g(\bfitxi ) of (2.2)
would also be multivalued, or nearly so, and the ideas presented here would need to
be applied to each of the rightmost eigenvalues. As long as there are not too many
such values, this would have minimal impact on costs.

2.2. Application to the Navier--Stokes equations. We will explore these
ideas when the dynamical system (1.1) comes from the incompressible Navier--Stokes
equations, and we now describe a way to specify a perturbation \bfitdelta (\bfitxi ) for this bench-
mark problem for use in (2.1). To this end, consider the Navier--Stokes equations

(2.4)
\vec{}ut  - \nu \nabla 2\vec{}u+\vec{}u \cdot \nabla \vec{}u+\nabla p = \vec{}0,

 - \nabla \cdot \vec{}u = 0,

posed on a domain \scrD \subset \BbbR d, d = 2 or 3, with boundary conditions

\vec{}u = \vec{}w on \partial \scrD D, \nu 
\partial \vec{}u

\partial n
 - \vec{}np =\vec{}0 on \partial \scrD N ,

for \partial \scrD = \partial \scrD D\cup \partial \scrD N consisting of the portions of the boundary of \scrD on which Dirich-
let or Neumann boundary conditions hold. In a typical scenario (see [10, p. 413]),
\vec{}w is a time-dependent inflow function that rapidly goes to a steady state, and the
Neumann boundary condition is applied at an outflow boundary. Let \scrH 1(\scrD ) be the
Sobolev space of functions on \scrD with first derivatives in L2(\scrD ), and let

\scrH 1
E := \{ \vec{}u \in \scrH 1(\scrD )d | \vec{}u = \vec{}w on \partial \scrD D\} , \scrH 1

E0
:= \{ \vec{}v \in \scrH 1(\scrD )d | \vec{}v =\vec{}0 on \partial \scrD D\} .

For fixed time t \in (0,\infty ), the weak formulation of (2.4) is to find \vec{}u(\cdot , t) \in \scrH 1
E ,

p(\cdot , t) \in L2(\scrD ) such that

(2.5)

\int 
\scrD 
\vec{}ut \cdot \vec{}v + \nu 

\int 
\scrD 
\nabla \vec{}u : \nabla \vec{}v +

\int 
\scrD 
(\vec{}u \cdot \nabla \vec{}u) \cdot \vec{}v  - 

\int 
\scrD 
p (\nabla \cdot \vec{}v) =

\int 
\scrD 
\vec{}f \cdot \vec{}v

for all \vec{}v \in \scrH 1
E0
,

 - 
\int 
\scrD 
q (\nabla \cdot \vec{}u) = 0 for all q \in L2(\scrD ).

Linear stability analysis uses a linearized form of the first (momentum) equation
of (2.4)--(2.5). Given a steady velocity field \vec{}u (i.e., \vec{}ut = 0), consider a perturbation
\vec{}u+\vec{}\gamma . Substitution of this perturbed velocity into the quadratic term from (2.4) gives

(\vec{}u+\vec{}\gamma ) \cdot \nabla (\vec{}u+\vec{}\gamma ) - \vec{}u \cdot \nabla \vec{}u = \vec{}u \cdot \nabla \vec{}\gamma +\vec{}\gamma \cdot \nabla \vec{}u+\vec{}\gamma \cdot \nabla \vec{}\gamma \approx \vec{}u \cdot \nabla \vec{}\gamma +\vec{}\gamma \cdot \nabla \vec{}u,
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where the approximation on the right-hand side is made under the assumption that
\vec{}\gamma and \nabla \vec{}u are small. Addition of the diffusion operator and specification of a per-
turbed weak formulation then leads to a trilinear form associated with the linearized
convection-diffusion operator,

(2.6) a(\vec{}\gamma ,\vec{}v;\vec{}u) := \nu 

\int 
\scrD 
\nabla \vec{}\gamma : \nabla \vec{}v +

\int 
\scrD 
(\vec{}u \cdot \nabla \vec{}\gamma ) \cdot \vec{}v +

\int 
\scrD 
(\vec{}\gamma \cdot \nabla \vec{}u) \cdot \vec{}v.

Mixed finite element discretization of (2.5) uses finite-dimensional subspaces Xh
0

\subset \scrH 1
E0

and Y h \subset L2(\scrD ) together withXh
E \subset \scrH 1

E containing functions that interpolate
the Dirichlet boundary data at element nodes lying in \partial \scrD D. We will assume that this
discretization is div-stable [15, sect. 2.2]. The discrete weak formulation is to find
\vec{}uh \in Xh

E and ph \in Y h such that
(2.7)\int 

\scrD 
[\vec{}uh]t \cdot \vec{}vh + \nu 

\int 
\scrD 
\nabla \vec{}uh : \nabla \vec{}vh +

\int 
\scrD 
(\vec{}uh \cdot \nabla \vec{}uh) \cdot \vec{}vh  - 

\int 
\scrD 
ph (\nabla \cdot \vec{}vh) =

\int 
\scrD 
\vec{}f \cdot \vec{}vh

for all \vec{}vh \in Xh
0 ,

 - 
\int 
\scrD 
qh (\nabla \cdot \vec{}uh) = 0 for all qh \in Y h.

Let \vec{}u
(s)
h be a discrete steady solution to (2.7), i.e., [\vec{}u

(s)
h ]t = 0. The eigenvalue

problem (1.3) is derived from a linearized discrete formulation associated with (2.7)
where the aim is to find eigenvalues \lambda h and associated eigenfunctions satisfying

(2.8)

a(\vec{}uh,\vec{}vh;\vec{}u
(s)
h ) - 

\int 
\scrD 
ph(\nabla \cdot \vec{}vh) = \lambda h

\int 
\scrD 
\vec{}uh \cdot \vec{}vh for all\vec{}vh \in Xh

0 ,\int 
\scrD 
qh(\nabla \cdot \vec{}uh) = 0 for all qh \in Y h.

Here, we have linearized around a steady flow velocity field \vec{}u
(s)
h satisfying (2.7).

Remark 2.3. A full discussion of the development of the trilinear form a(\cdot , \cdot ; \cdot ) of
(2.6) and the derivation of (2.8) is given in [10, sects. 8.2--8.3]. This form also arises
from use of Newton's method for solving the nonlinear system of equations arising
from implicit time discretization of (2.5).

Let the dimensions of Xh
0 and Y h be nu and np, respectively. Let u(s) be the

vector of coefficients of the steady finite element solution\vec{}u
(s)
h appearing in (2.8). Then

the eigenvalue problem (1.3) has the structure

(2.9)

\biggl[ 
F BT

B 0

\biggr] \biggl[ 
u
p

\biggr] 
= \lambda 

\biggl[ 
 - Q 0
0 0

\biggr] \biggl[ 
u
p

\biggr] 
.

Here, F = F (u(s)) is the matrix of order nu derived from the bilinear form a(\cdot , \cdot ;\vec{}u(s)h ),
B and BT are matrix representations of negative-divergence and gradient operators,
respectively (B is of size np \times nu), and Q is a velocity mass matrix, also of order nu.

Remark 2.4. The matrix on the right-hand side of (2.9) is singular, and the result-
ing infinite eigenvalue can lead to instability in eigenvalue computations [19]. This can

be avoided by replacing the matrix by
\bigl[ 

 - Q \alpha BT

\alpha B 0

\bigr] 
, which leaves the finite eigenvalues
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intact and maps the infinite eigenvalue to 1/\alpha ; see [4].1

We want to explore the sensitivity of our modified eigenvalue problem to pertur-
bation. For this, we add a small perturbation c(\vec{}uh,\vec{}vh;\vec{}\delta h) to a(\vec{}uh,\vec{}vh;\vec{}\delta h) in (2.8).
The perturbation is defined in two steps. First, we specify a discretely divergence-free
vector field \vec{}\delta h, that is, one satisfying

(2.10)

\int 
\scrD 
qh (\nabla \cdot \vec{}\delta h) = 0 for all qh \in Y h.

This ensures that the perturbed velocity \vec{}uh +\vec{}\delta h would be appropriate as an initial
condition for testing the stability of \vec{}uh. Second, the field \vec{}\delta h is used to generate
a nondissipative perturbation ch(\vec{}uh,\vec{}vh;\vec{}\delta h) of ah(\vec{}uh,\vec{}vh;\vec{}\delta h). This means that the
perturbation does not introduce any damping effects associated with numerical diffu-
sion. To illustrate the construction, we will suppose that Th denotes a subdivision of
\scrD \subset \BbbR 2 into triangular or rectangular elements. The extension to three-dimensional
problems is perfectly straightforward.

Claim 2.1. Suppose that \phi h \in \scrH 1(\scrD ) is a finite element function defined on Th

and that \vec{}\delta h is defined locally on every element k \in Th, \vec{}\delta h| k := \vec{}\delta 
(k)

h , via

(2.11) \vec{}\delta 
(k)

h = curl \phi 
(k)
h =

\Bigl[ 
 - \partial \phi (k)h /\partial x2, \partial \phi 

(k)
h /\partial x1

\Bigr] T
,

so that \vec{}\delta 
(k)

h is divergence-free on each element. Then \vec{}\delta h :=
\sum 

k\in Th

\vec{}\delta 
(k)

h satisfies
(2.10).

Proof. For any function qh \in Y h,\int 
\scrD 
qh (\nabla \cdot \vec{}\delta h) =

\sum 
k\in Th

\int 
k

q
(k)
h (\nabla \cdot curl \phi (k)h\underbrace{}  \underbrace{}  

=0

) = 0.

Note that the local construction (2.11) generates a discontinuous velocity field so

that in general \vec{}\delta h \not \in \scrH 1(\scrD )
d
.

Claim 2.2. Let the perturbation operator on element k \in Th be given by

(2.12) c
(k)
h (u

(k)
h , v

(k)
h ;\vec{}\delta 

(k)

h ) :=

\int 
k

(\vec{}\delta 
(k)

h \cdot \nabla u(k)h ) v
(k)
h  - 1

2

\int 
\partial k

u
(k)
h v

(k)
h
\vec{}\delta 
(k)

h \cdot \vec{}n.

Then c
(k)
h is skew-adjoint on Th, and

ch(uh, vh;\vec{}\delta h) :=
\sum 
k\in Th

c
(k)
h (u

(k)
h , v

(k)
h ;\vec{}\delta 

(k)

h )

is skew-adjoint on \scrD .2

1We use this variant of the mass matrix with \alpha =  - 1/10 in all of our computations. The
resulting mapped eigenvalue \lambda =  - 10 is far enough from the near-critical ones that it does not affect
the results.

2In this discussion, uh and vh are discrete scalar functions. For vector-valued arguments, e.g.,
\vec{}uh = ([uh]1, [uh]2)

T , ch(\vec{}uh,\vec{}vh;\vec{}\delta h) =
\sum 

i ch([uh]i, [vh]i;\vec{}\delta h) is the sum of contributions from indi-
vidual scalar components.
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Proof. Since \vec{}\delta h \not \in \scrH 1(\scrD )
d
, we need to apply Green's theorem on each element:\int 

k

(\vec{}\delta 
(k)

h \cdot \nabla u
(k)
h ) v

(k)
h =

\int 
k

(v
(k)
h

\vec{}\delta 
(k)

h )\cdot \nabla u
(k)
h =  - 

\int 
k

\nabla \cdot (v(k)h
\vec{}\delta 
(k)

h )u
(k)
h +

\int 
\partial k

u
(k)
h v

(k)
h

\vec{}\delta 
(k)

h \cdot \vec{}n

= - 
\int 
k

(v
(k)
h \nabla \cdot \vec{}\delta 

(k)

h +\vec{}\delta 
(k)

h \cdot \nabla v
(k)
h )u

(k)
h +

\int 
\partial k

u
(k)
h v

(k)
h

\vec{}\delta 
(k)

h \cdot \vec{}n

= - 
\int 
k

(\vec{}\delta 
(k)

h \cdot \nabla v
(k)
h )u

(k)
h +

\int 
\partial k

u
(k)
h v

(k)
h

\vec{}\delta 
(k)

h \cdot \vec{}n,

where the last equality follows from the fact that \vec{}\delta 
(k)

h is divergence-free on each
element. It follows that\int 
k

(\vec{}\delta 
(k)

h \cdot \nabla u(k)h ) v
(k)
h  - 1

2

\int 
\partial k

u
(k)
h v

(k)
h
\vec{}\delta 
(k)

h \cdot \vec{}n = - 
\int 
k

(\vec{}\delta 
(k)

h \cdot \nabla v(k)h )u
(k)
h +

1

2

\int 
\partial k

u
(k)
h v

(k)
h
\vec{}\delta 
(k)

h \cdot \vec{}n,

that is, c
(k)
h is skew-adjoint. Summation over all the elements establishes the same

property for ch.

The perturbed variant of (2.8) is

a(\vec{}uh,\vec{}vh;\vec{}u
(s)
h ) + ch(\vec{}uh,\vec{}vh;\vec{}\delta h) - 

\int 
\scrD 
ph(\nabla \cdot \vec{}vh) = \^\lambda h

\int 
\scrD 
\vec{}uh \cdot \vec{}vh for all\vec{}vh \in Xh

0 ,\int 
\scrD 
qh(\nabla \cdot \vec{}uh) = 0 for all qh \in Y h.

This leads to the perturbed matrix eigenvalue problem (2.1)

(2.13)

\biggl[ 
F +N(\bfitxi ) BT

B 0

\biggr] \biggl[ 
u
p

\biggr] 
= \^\lambda 

\biggl[ 
 - Q \alpha BT

\alpha B 0

\biggr] \biggl[ 
u
p

\biggr] 
,

where the perturbation matrix N = N(\bfitxi ) is determined from

(2.14) (u, Nv) = ch(\vec{}uh,\vec{}vh, \vec{}\delta h)

so that in particular N is a skew-symmetric matrix, NT =  - N , for all parameter
values \bfitxi independent of the boundary conditions of the flow problem.

It remains to specify the finite element function \phi h used in Claim 2.1 to define the
vector field\vec{}\delta h. Following [20], we take \phi h(x, \bfitxi ) \in \scrH 1(\scrD ) to be a parameter-dependent
scalar potential specified using a covariance function \scrC (x(1), x(2)) for x(i) \in \scrD . In
particular, given \scrC , let C := \scrC (x,x) be the covariance matrix of order n consisting of
the vertices in the subdivision associated with Xh

0 , so that Cij = \scrC (xi, xj). Now let
\bfitphi be an n-dimensional zero-mean stationary random process with covariance matrix
C, i.e., C = \BbbE (\bfitphi \bfitphi T ), where \BbbE refers to expected value. If C = \sigma 2V\Theta V T is an
eigenvalue--eigenvector decomposition (scaled by the variance), then \bfitphi can be defined
using a discrete Karhunen--Lo\`eve (KL) expansion

(2.15) \bfitphi (\bfitxi ) := \sigma V\Theta 1/2\bfitxi = \sigma 

n\sum 
j=1

\sqrt{} 
\theta j vj \xi j ,

where the eigenvector vj is the jth column of V and \{ \xi j\} nj=1 are uncorrelated ran-
dom variables with zero mean and unit variance [18, sect. 5.4]. It is often the
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case that many of the eigenvalues are small and some of the terms in (2.15) can
be removed without significant loss of accuracy. We will choose m < n such that\bigl( \sum n

j=m+1 \theta j
\bigr) \big/ \bigl( \sum n

j=1 \theta j
\bigr) 
\leq 5/100, and, in what follows, \bfitxi := (\xi 1, . . . , \xi m)T will rep-

resent an m-dimensional vector of parameters and \bfitphi (\bfitxi ) is defined using the truncated
KL expansion

(2.16) \bfitphi (\bfitxi ) := \sigma 

m\sum 
j=1

\sqrt{} 
\theta j vj \xi j .

This \bfitxi -dependent coefficient vector (of length n) then characterizes a piecewise-defined
linear or bilinear function \phi h(\bfitxi ). For the computational results described in section 3,
we take the smooth covariance function

(2.17) \scrC (x(1), x(2)) := \sigma 2 exp

\left(   - 

\left[  \Biggl( x(1)1  - x
(2)
1

c1

\Biggr) 2

+

\Biggl( 
x
(1)
2  - x

(2)
2

c2

\Biggr) 2
\right]  \right)  ,

where c1 and c2 are correlation lengths. We will also assume that \{ \xi j\} in (2.16) are
mutually independent, with each satisfying a truncated Gaussian distribution with
range [ - 3, 3], so that \xi j has the density function

\rho (\xi ) =

\left\{     
1

erf(3
\surd 
2)

1\surd 
2\pi 

exp
\Bigl( 

\xi 2

2

\Bigr) 
for | \xi | \leq 3,

0 for | \xi | > 3.

A MATLAB implementation of this distribution is given in [3] and described in [2].
We note two differences between this formulation of perturbations and traditional

approaches based on pseudospectra. First, the perturbed eigenvalue problem (2.1),
as specified in (2.13), is restricted to having a structure determined from that of the
original problem, so that the resulting perturbed eigenvalues are closer in form to
structured pseudoeigenvalues [23, Chap. 50]. Moreover, the perturbation itself derives
explicitly from the nonlinear term \vec{}u \cdot \nabla \vec{}u in (2.4). Indeed, if the original problem (1.1)
were linear so that the Jacobian J did not depend on u, then the eigenvalues of J
might still be sensitive to perturbation, but the ideas discussed here would not give
insight into this. Despite these limitations, as will be shown in sections 3 and 4, the
behavior of the perturbed eigenvalues gives insight into transient growth of solutions
and other features of transient solvers.

We conclude this section with an analytic result bounding the size of the eigen-
value perturbation in proportion to the perturbation size. Let \scrM denote the matrix
on the right-hand side of (2.13), and let \scrF and \widehat \scrF = \scrF +\scrN denote the unperturbed
and perturbed matrices on the left-hand sides of (2.9) and (2.13), respectively; here
\scrN = \scrN (\bfitxi ) =

\bigl[ 
N(\bfitxi ) 0
0 0

\bigr] 
. We are interested in the eigenvalue problems \scrF v = \lambda \scrM v and\widehat \scrF \^v = \^\lambda \^\scrM \^v. \scrM can be factored as

(2.18) \scrM =

\biggl[ 
I 0

 - \alpha BQ - 1 I

\biggr] \biggl[ 
 - Q 0
0 \alpha 2BQ - 1BT

\biggr] \biggl[ 
I  - \alpha Q - 1BT

0 I

\biggr] 
.

The velocity mass matrixQ and Schur complement \alpha 2BQ - 1BT each admit a Cholesky
decomposition, Q = LLT , \alpha 2BQ - 1BT = RRT , so that (2.18) can be refined to

\scrM =

\biggl[ 
I 0

 - \alpha BQ - 1 I

\biggr] \biggl[ 
L 0
0 R

\biggr] 
\underbrace{}  \underbrace{}  

\biggl[ 
 - I 0
0 I

\biggr] 
\underbrace{}  \underbrace{}  

\biggl[ 
LT 0
0 RT

\biggr] \biggl[ 
I  - \alpha Q - 1BT

0 I

\biggr] 
\underbrace{}  \underbrace{}  .

\scrL \scrD \scrL T
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Thus, we can consider the unperturbed and perturbed standard eigenvalue problems

(2.19) \scrD  - 1\scrL  - 1\scrF \scrL  - Tw = \lambda w, (\scrD  - 1\scrL  - 1\scrF \scrL  - T +\scrD  - 1\scrL  - 1\scrN \scrL  - T ) \^w = \^\lambda \^w.

Theorem 2.1. Let \scrA = \scrD  - 1\scrL  - 1\scrF \scrL  - T and \scrE = \scrD  - 1\scrL  - 1\scrN \scrL  - T be the matrices
of (2.19), and assume \scrA is diagonalizable. If \delta h is the perturbation defined using

(2.11) and \lambda is the rightmost eigenvalue of (1.3), then the eigenvalue \^\lambda of the perturbed

problem (2.1) closest to \lambda satisfies | \^\lambda  - \lambda | \leq (c/h) \| \delta h\| \infty .

Proof. Since \scrA = \scrV \Lambda \scrV  - 1 is assumed to be diagonalizable, we can use the Bauer--
Fike theorem [12, Chap. 7] to explore the eigenvalue perturbation: given an eigenvalue
\lambda of \scrA ,

min
\^\lambda \in \sigma (\scrA +\scrE )

| \^\lambda  - \lambda | \leq \kappa (\scrV )\| \scrE \| 2 ,

where \kappa (\scrV ) = \| \scrV \| 2\| \scrV  - 1\| 2. We seek a bound on \| \scrE \| 2 = \| \~\scrE \| 2, where \~\scrE = \scrL \scrN \scrL  - T ;
the equality here follows from the fact that \scrD is unitary. The structure of \scrL leads to

\~\scrE = \scrL  - 1\scrN \scrL  - T =

\biggl[ 
L - 1NL - T \alpha L - 1NQ - 1BTR - T

\alpha R - 1BQ - 1NL - T \alpha 2R - 1BQ - 1NQ - 1BTR - T

\biggr] 
,

so that \| \~\scrE \| 2 \leq \| L - 1NL - T \| 2+O(\alpha ). This holds for all \alpha \not = 0, and so it also holds in
the limit as \alpha \rightarrow 0, giving \| \~\scrE \| 2 \leq \| L - 1NL - T \| 2. Since both N and L - 1NL - T are
skew-symmetric, it follows that \| \scrE \| 2 \leq \rho (L - 1NL - T ), the spectral radius.

Thus, we require a bound on the Rayleigh quotient | (y,Ny)| 
(y,Qy) . For this, we use

(2.14) together with a standard bound on | ch| (see [10, p. 243]) to get

| (y,Ny)| 
(y,Qy)

=
| ch(yh, yh; \delta h)| 
\| yh\| 2L2(\scrD )

\leq 
\| \delta h\| \infty \| \nabla yh\| L2(\scrD ) \| yh\| L2(\scrD )

\| yh\| 2L2(\scrD )

=
\| \delta h\| \infty \| \nabla yh\| L2(\scrD )

\| yh\| L2(\scrD )
.

The assertion then follows from the inverse estimate \| \nabla yh\| L2(\scrD )/\| yh\| L2(\scrD ) \leq O(1/h).
The constant c includes the constant in this last inequality and \kappa (\scrV ).

3. Benchmark problems and structure of eigenvalues. We will illustrate
these ideas for two benchmark problems. In this section, we specify the problems
and their features of interest, the eigenvalues associated with linear stability analysis
and the effect of perturbation of these eigenvalues. Each of these is a model of flow
through a channel for which there are inflow and outflow boundaries. The position
of the outflow boundary is far enough downstream that the flow is fully developed.
The spatial approximation is done using Q2--P - 1 (biquadratic velocity; discontinuous
linear pressure) mixed approximation [10, sect. 3.3.1], implemented in the ifiss soft-
ware package [8, 9]. Unless otherwise specified, the discretization is done on a uniform
grid with element width h = 1/32, which gives 64 elements along the vertical interval
[ - 1, 1]. This corresponds to ``grid level"" \ell = 6 in ifiss, with element width h = 2/2\ell .
For both benchmark problems, we will explore the stability of solutions obtained for
choices of the viscosity parameter near the critical values for linear stability. We
determined these critical values experimentally, as described, for example, in [7].

3.1. Expansion flow around a symmetric step. The domain \scrD is a rectan-
gular duct with a symmetric expansion, with boundary conditions

\bullet parabolic profile\vec{}u( - 1, y) = (1 - 4y2, 0) at the inflow boundary ( - 1, y), | y| \leq .5;

\bullet natural conditions \nu \partial ux

\partial x = p,
\partial uy

\partial x = 0 at the outflow boundary (20, y), | y| \leq 1;
and
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Fig. 1. Symmetric step domain and velocity/pressure solutions for \nu = 1/220.

\bullet no-flow conditions \vec{}u = 0 along fixed walls (x,\pm 1), 0 \leq x \leq 20; (x,\pm .5), - 1 \leq 
x \leq 0; (0, y), .5 \leq | y| \leq 1.

Details of the domain and a sample solution are shown in Figure 1. The discretization
is defined on a uniform grid of square elements. The key feature of this solution is
that it is reflectionally symmetric with respect to the centerline y = 0, i.e., the stream
function \psi satisfies \psi (x, y) =  - \psi (x, - y). It follows that for the velocity,

(3.1) ux(x, y) = ux(x, - y), uy(x, y) =  - uy(x, - y).

This flow problem exhibits a pitchfork bifurcation [6]: as the viscosity decreases
through a critical value (approximately \nu = 1/220.5), the rightmost eigenvalue of
(2.9), which is real, changes from negative (indicating linear stability) to positive
(instability). Figure 2 shows the 10 rightmost eigenvalues for three values of \nu in this
range and the rightmost eigenvalues (detail in the inset) for each choice, whose values
are also identified on the right.

We explored the sensitivity of the rightmost negative eigenvalues for the linearly
stable examples, \nu = 1/210 and \nu = 1/220, using the perturbed eigenvalue problem
(2.13). This was derived using correlation lengths c1 = c2 = 2 in (2.17), which resulted
in a finite expansion (2.16) with m = 19 terms. The surrogate function g(I) of (2.3)
used to estimate eigenvalues was constructed from a two-level sparse grid on the m-
dimensional parameter space, which in turn resulted in n\bfitxi = 761 sparse grid nodes.
Thus, it is necessary to solve 760 eigenvalue problems, that is, find the rightmost
eigenvalues of 760 perturbed systems (2.13), one for each sparse-grid node. (One of
the sparse-grid nodes is \bfitxi = 0, which corresponds to an unperturbed system.) Once
these are available, the estimates of eigenvalues for other choices of \bfitxi can be obtained
by evaluating g(I). We implemented the sparse-grid interpolation using the MATLAB
toolbox spinterp [16, 17].

The dependence of the estimated perturbed eigenvalues on the perturbation size
is illustrated in Figure 3. We found that insight can be provided using small values
of the standard deviation in (2.16), and in these tests we used \sigma = \beta h2 for \beta = .1,
.2, and .3. For each \sigma , the figure shows the distribution of one million eigenvalue
estimates, computed using the interpolant (2.3), with results for \nu = 1/210 shown
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\nu \lambda 

1/210  - 2.7 \times 10 - 3

1/220  - 1.4 \times 10 - 4

1/250 5.8 \times 10 - 3

Fig. 2. Eigenvalues for the symmetric step problem.

Fig. 3. Surrogate perturbed rightmost eigenvalues for the symmetric step problem, for \sigma = .1h2,
.2h2, and .3h2, and \nu = 1/210 (left) and \nu = 1/220 (right).

on the left and for \nu = 1/220 on the right. For both values of \nu , the rightmost
unperturbed eigenvalue (center of the set of perturbations) is negative, showing that
the associated steady solution is stable, but for the smaller, closer-to-critical value
\nu = 1/220, some of the estimated perturbed eigenvalues are positive, whereas all the
perturbations are negative for \nu = 1/210. The two figures have the same horizontal
scaling, indicating that the magnitude of the perturbations does not depend on \nu .
The bounding dashed lines show that the magnitude of perturbations varies linearly
with \sigma , as the bound of Theorem 2.1 suggests.

Finally, Figure 4 shows the behavior of the eigenvalue perturbations as well as
the critical eigenvalues (highlighted in the middle of each set of perturbations) as the
discretization mesh size varies. Results are shown for four mesh sizes, h = 1/8, 1/16,
1/32, and 1/64 (corresponding to grid levels \ell = 4 through 7 in ifiss). For each

\ell , d\ell is the maximal difference | \^\lambda  - \lambda | between the surrogate rightmost perturbed
eigenvalue and the rightmost true eigenvalue among all surrogate values. The range
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Fig. 4. Rightmost eigenvalues together with surrogate perturbed rightmost eigenvalues for the
symmetric step problem with \nu = 1/210, \sigma = .3\times (1/32)2 and various mesh sizes.

of perturbations appears to be independent of the discretization, which suggests that
the O(1/h) dependence of the bound in Theorem 2.1 is pessimistic. We attribute
this to limitations on what can be obtained using the Bauer--Fike theorem for the
transformed problems (2.19). Also note that the critical eigenvalues move to the left
with mesh refinement, indicating that stability of the discrete systems is enhanced
with mesh refinement, although it is also clear that a limiting value is approached
with refinement.

3.2. Flow around a square obstacle. In this case, the domain is a rectangular
duct containing a square obstacle, with boundary conditions

\bullet parabolic profile \vec{}u( - 1, y) = (1 - 4y2, 0) at the inflow boundary (0, y), | y| \leq 1;

\bullet natural conditions \nu \partial ux

\partial x = p,
\partial uy

\partial x = 0 at the outflow boundary (8, y), | y| \leq 1;
and

\bullet no flow conditions \vec{}u = 0 along the top and bottom walls (x,\pm 1), 0 \leq x \leq 8,
and on the obstacle, a square centered at (2, 0) with sides of length 0.5.

For this example, we used a level-6 stretched grid with local refinement near the
obstacle. A representative steady solution that retains the reflectional symmetry is
shown in Figure 5. In this case, there is a symmetry-breaking Hopf bifurcation for
\nu \approx 1/186; that is, for \nu in this range there is a complex conjugate pair of rightmost
eigenvalues whose real parts change from negative to positive as \nu is reduced. Figure
6 shows the 100 smallest eigenvalues for three values of \nu , two near critical (\nu = 1/175
and 1/185.6) and one supercritical (\nu = 1/200), as well as a detail of the rightmost
eigenvalues.

The behavior of the perturbed (estimated) eigenvalues is illustrated in Figure 7.
Once again, we computed one million eigenvalue estimates for three values of the
standard deviation in (2.16), \sigma = .1h2, .2h2, and .3h2 with h = 1/32. These are
shown in the figure, for \nu = 1/175 on the left and \nu = 1/185.6 on the right. For both
values of \nu , the rightmost unperturbed eigenvalue (center of the set of perturbations)
has negative real part, showing that the associated steady solution is stable, but
for the close-to-critical value \nu = 1/185.6, some of the perturbed eigenvalues have
positive real part. As for the step problem, it is readily seen that the magnitude of
the perturbations does not depend on \nu and varies linearly with \sigma .
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Fig. 5. Obstacle domain and velocity/pressure solutions for \nu = 1/185.6.
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\nu Re(\lambda )

1/175  - 2.9 \times 10 - 2

1/185.6  - 3.0 \times 10 - 4

1/200 3.7 \times 10 - 2

Fig. 6. Eigenvalues for the obstacle problem.

4. Unsteady flow simulations. In this section, we explore the connection be-
tween time integration of the Navier--Stokes equations and the eigenvalue perturbation
results in the previous section. We will do this by computing time-accurate solutions
of the Navier--Stokes equations using the adaptive (stabilized) Trapezoidal Rule (sTR)
time stepping methodology built into ifiss. The suitability of sTR for long-time in-
tegration is discussed in [14]. Full details of the ifiss implementation of sTR can be
found in section 10.2.3 of [10]. (Stabilization is based on time step averaging, which
prevents the ``ringing"" to which TR is susceptible for stiff systems.) In what follows,
we present results obtained from a nonlinear version of the integrator, denoted by
(sTRk), where a fixed number (k = 1 or k = 2) of Picard corrections are performed
at every time step. We present results for the benchmark problems of sections 3.1
and 3.2. Our objective is to test the sensitivity of the reference flow with respect
to instantaneous spatial perturbations, loosely simulating a laboratory experiment
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Fig. 7. Real parts of surrogate perturbed rightmost eigenvalues for the obstacle problem, for
\sigma = .1h2, .2h2, and .3h2, and \nu = 1/175 (left) and \nu = 1/185.6 (right).

where a reference steady flow is subject to an external disturbance, and the flow is
monitored to see whether it returns to the steady state.

4.1. Evolution of expansion flow around a symmetric step. Motivated by
the eigenvalue calculations shown in section 3.1, we consider the three distinct values
of the viscosity parameter \nu = 1/210 (linearly stable), \nu = 1/220 (close to critical),
and \nu = 1/250 (unstable).

We model the laboratory scenario computationally via a two-stage process:
1. We start from a quiescent state and a tiny time step (1e-9). The inflow

profile is smoothly ramped up to a fully developed flow using an exponential
startup. The sTR2 integration is then carried out for 330 time steps with
a relatively tight accuracy tolerance (i.e., a bound on an estimate of local
truncation error), 3e-5. The number of steps taken is arbitrary but needs
to be chosen large enough so that the reference flow is visually steady. More
precisely, when this phase is complete, the instantaneous acceleration a(t),

defined in terms of the flow velocity \vec{}uh(\cdot , t) at time t by a(t) =

\sqrt{} \int 
\scrD 
\bigl( 
\partial \vec{}uh

\partial t

\bigr) 2
,

should be around 10 - 2 or even less.
At the point in time, T say, where the first stage is completed, the integration
is interrupted and a perturbation is added to the flow field \vec{}uh(\cdot , T ). The

perturbation is of the form \vec{}\delta h specified in Claim 2.1 where the associated
scalar field \phi h derives from (2.16)--(2.17). We construct \phi h with \sigma = .3(h2).3

2. The time integration is then restarted without reducing the time step, us-
ing sTR1 in place of sTR2 (because it is marginally less dissipative). The
restarted integration is continued for a fixed number (typically, 200 or 700) of
time steps, stopping prematurely only if the time reaches T \ast =1e14---which
we interpret as reaching a ``computational steady state""---at which point the
adaptive time-stepping routine is taking very large time steps (see Figure 12
below), and the acceleration a(T \ast ) will almost certainly be smaller than unit
roundoff.

3It is also necessary to scale the perturbation so as not to ``shock"" the transient simulation---
the perturbation field is thus scaled by a factor of 1e-5. This ensures that the magnitude of the
perturbation is comparable to the time accuracy used for the simulation.
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Fig. 8. First phase for symmetric step flow with \nu = 1/250.

The mean vorticity \omega (t), or the average vertical velocity at the outflow,

\omega (t) =

\int 
\scrD 
\nabla \times \vec{}uh(\cdot , t) =

\int 
\partial \scrD N

uy(\cdot , t) ds,

provides a convenient way of assessing the degree of departure from the reflectionally
symmetric flow (for which \omega =0). At the conclusion of the first phase of the time
integration, a pseudosteady flow is computed for each of the three values of \nu . The
evolution of the mean vorticity and the acceleration visualized in Figure 8 shows that
a symmetric flow is established for \nu = 1/250 before the interruption is made after
330 time steps; this corresponds to time T \approx 32.

Moving on to the second stage, we show results for the subcritical cases \nu = 1/210
and 1/220, for three representative flow perturbations, each of which derives from a

particular collocation point \bfitxi (k) used in (2.3). For the first of these, no perturbation is
made (this corresponds to the point \bfitxi \equiv 0) and the integration simply continues from
the first-stage stopping point T . The other two are representatives of a ``benign""
perturbation and a ``lively"" perturbation and have the spatial structure shown in
Figure 9.

The evolution of the flow after the restart for \nu = 1/210 is depicted in Figure 10,
where mean vorticity is shown in both actual and logarithmic scales. The unperturbed
flow is perfectly stable; the sTR1 integrator reaches the end time (T \ast =1e14) at time
step 396, 66 steps after the restart. The distinctive jumps in the acceleration are
associated with the stabilization of the integrator, which has the effect of periodically
injecting a small amount of dissipation into the flow. The benign perturbation, which
respects the reflectional symmetry, has no effect on the long-term flow evolution. In
contrast, the lively perturbation excites visible instability at about time step 390, 60
steps after the restart. But (as seen in particular from the acceleration), the size of the
perturbation is not big enough to stop the long-term evolution to the symmetric flow
at the designated end time T \ast . The growth in vorticity for the stable examples toward
the end of the simulation (about step 385) is a roundoff effect caused by allowing the
simulation to proceed after changes in the steady solution are near machine precision.

The evolution of flow for the intermediate viscosity parameter \nu = 1/220 is shown
in Figure 11. The unperturbed case is just about stable: the sTR1 integrator reaches
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Fig. 9. Structure of two scalar potentials \phi h used to generate velocity perturbations \vec{}\delta h.
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Fig. 10. Long-term evolution for different perturbations, symmetric step flow with \nu = 1/210.
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Fig. 11. Long-term evolution for different perturbations, symmetric step flow with \nu = 1/220.

the end time 75 steps after the restart. A virtually identical evolution is evident
when the perturbation to the flow is benign. (As in the previous example, roundoff
effects lead to some growth in the vorticity after a steady solution is obtained.) The
time evolution for the lively perturbation is noticeably different, however. In this
case, the sTR1 integrator rejects time step 415 (85 steps after the restart) and the
computational flow evolves to a numerically noisy solution where the magnitude of
the oscillation is of the order of the time-stepping accuracy.

These observations are substantiated in Figure 12, which shows the history of
the time step sizes chosen by the adaptive integrator. For each of the plots in this
figure, the switch from the first to the second stage is identified by a vertical dotted
line. When either no perturbation or a benign perturbation is made, the time step
sizes rapidly increase because the integration goes to a steady state for the subcritical
values of \nu . This behavior can also be seen for the lively perturbation and \nu = 1/210.
In contrast, the integrator behaves differently for \nu = 1/220---here the time step size
is cut back at around 70 time steps after the perturbation is made in order to resolve
the nonstationary solution shown at the bottom of Figure 11. Computing solutions
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Fig. 12. Time step histories: time step size vs. time step count for various perturbations,
symmetric step, \nu = 1/210 (left), \nu = 1/220 (right).
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Fig. 13. Time step history and long-term evolution for the unperturbed flow, symmetric step,
\nu = 1/250.

so close to the stability limit is a delicate business.
Results for the supercritical viscosity parameter \nu = 1/250 are in Figure 13. In

this instance, no perturbations are needed to excite instability. The time step history
of the complete flow evolution from t=0 to t=1e14 is presented at the top of the
figure. Note the scale on the vertical axis---this is a pretty demanding computational
exercise! The evolution of mean vorticity and acceleration after the interrupt is shown
in the two plots at the bottom of Figure 13 and should be contrasted with the results
for the subcritical viscosity shown in Figure 11. Just when the symmetric flow looks
to be steady (400 time steps; 70 after the restart), the time step is cut back to O(1)
and after a transient the flow goes to a computational steady state that does not have
reflectional symmetry. This is evident from the flow snapshots plotted at/after the
interrupt shown in Figure 14; the particular steady-state solution (top eddy longer
than the bottom one) is solely determined by the buildup of roundoff error. The two
``cups"" between 400 and 600 in the time step history shown at the top of Figure 13
suggest that the sTR1 algorithm needed two attempts to fix on the specific stationary
solution---it is instructive to contrast this with the evolution that results when vigor-
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Fig. 14. Snapshots of the (unperturbed) flow, symmetric step, \nu = 1/250.

ously perturbing the flow close to the critical viscosity, which is shown at the bottom
right of Figure 12.

4.2. Evolution of flow around an obstacle. Motivated by the eigenvalue
calculations discussed in section 3.2, we now consider three distinct values of the
viscosity parameter for the obstacle problem: \nu = 1/175 (subcritical), \nu = 1/185.6
(close to critical), and \nu = 1/200 (unstable). We consider \nu = 1/200 first. The same
two-stage process described above gives the results shown in Figure 15. These results
should be compared with those in Figure 13. The difference is that instead of going
to a nonsymmetric steady state solution, the computational flow evolves to a periodic
(vortex-shedding) solution, at which point the time step becomes essentially constant.
The vortex-shedding solution is persistent---it is unchanged when we run the solver
for another 10,000 time steps. The same long-term behavior is obtained if a pertur-
bation is added at the interrupt point. The different outcomes for the two benchmark
problems are representative of the difference between a pitchfork bifurcation (for the
step) and a Hopf bifurcation (for the obstacle) [5], [10, p. 343].

To study the flow breakdown mechanism in detail, the second phase of the time
integration is computed with a very small accuracy tolerance (1e-9) using the unsta-
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Fig. 15. Time-step history and long-term evolution for the unperturbed flow, obstacle, \nu = 1/200.

bilized TR1 integrator.4 In all cases discussed below, the time integrator is run for
2,500 steps after the interrupt. Figure 16 shows the evolution of the mean vorticity
and the acceleration using this refined strategy for each value of the viscosity param-
eter when no perturbation is done. In the supercritical case of \nu = 1/200 (bottom),
there is a fast breakdown to the vortex-shedding solution. (Note that the evolution is
plotted against physical time in this figure.) For both the subcritical (\nu = 1/175) and
near-critical (\nu = 1/185.6) cases, there are long delays (until t \approx 6e7 and t \approx 1.1e4,
respectively) after the interrupt, after which numerical instability kicks in and (as in
the preceding section) generates a numerically noisy solution. The onset of instability
is dramatically later for the subcritical case.

We explore the breakdowns in more depth in Figure 17, which shows magnified
images of the noisy solution measured at the time they become unsteady. These
images show that the magnitudes of the numerical oscillations (of order 1e-8 in the
subcritical case and 1e-7 in the near-critical case) are comparable to the time-stepping
accuracy. Even when no explicit perturbation is done, time accuracy plays a role in

4Stabilization of the TR is not appropriate when the accuracy tolerance is so small.
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Fig. 16. Evolution of mean vorticity and flow acceleration for three viscosity parameters, no
perturbations, obstacle flow.
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Fig. 17. Zoom of flow evolution for \nu = 1/175 and \nu = 1/185.6, obstacle flow.

long-term simulation to compute steady solutions in near-critical regimes.
Continuing this exploration of subcritical cases, we now consider the effects of

perturbations at the interrupt. As in the previous section, we look at one perturbation
that respects the reflectional symmetry of the flow solution in Figure 5 and is expected
to be ``benign"" and one that breaks the reflectional symmetry and so is expected to be
``lively."" The results for \nu = 1/175 are shown in Figure 18, and those for \nu = 1/185.6
are in Figure 19. In these figures, the vertical scaling for the mean vorticities are
now set to be equal in order to discern differences for the two viscosity values. These
images should be compared with those corresponding to analogous experiments with
no perturbation in Figures 16--17. In particular, for the subcritical viscosity \nu = 1/175
with either type of perturbation, after a long delay, the solution moves away from
a steady state. This is not surprising, since the same phenomenon occurs when no
perturbation is done. The onset of periodic behavior for the perturbed data is slightly
earlier than for no perturbation (and earlier still for the lively perturbation), but the
magnitude of the oscillations is small. The results for \nu = 1/185.6 (Figure 19) bear
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Fig. 18. Short-term evolution for small perturbations, obstacle flow with \nu = 1/175. The inset
shows a magnified image of the onset of periodic behavior.

some similarity to these---most notably, the behavior for the benign perturbation is
virtually identical to that for no perturbation (middle of Figure 16). The structure
of the oscillations for the near-critical viscosity is more like that for the supercritical
viscosity (for both perturbations as well as without perturbation, compare the images
for lively perturbation in Figure 19 with the images in Figures 16--17). In contrast, for
the subcritical viscosity \nu = 1/175, the structure of the oscillations is more like that
arising when no perturbation is done. But for the lively perturbation and \nu = 185.6,
the onset of unstable behavior is significantly earlier (bottom of Figure 19).

Finally, when we check to see what happens when the perturbation is significantly
larger (of the order of the perturbation made in computing the pseudoeigenvalues in
Figure 6), we observe that there is a big difference in the time-stepping behavior in
any case where the perturbation is not benign. This is illustrated by the results shown
in the bottom plot in Figure 20. In this case, the size of the lively perturbation is big
enough to destabilize the integrator and a noisy periodic solution is computed. This
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Fig. 19. Short-term evolution for small perturbations, obstacle flow with \nu = 1/185.6. The
inset shows a magnified image of the onset of periodic behavior.

mirrors the vortex-shedding solution that is computed in the unstable case but has
an amplitude that is too small to be seen when plotted.

5. Concluding remarks. Our aims in this study were twofold. First, we de-
veloped a new approach to assess the stability of dynamical systems by constructing
perturbed systems based on collocation methods. This is reminiscent of methods
for computing pseudospectra, but it has the advantage that the process of sampling
(approximate) spectra is significantly less costly. Second, we compared the results
of such assessments with the performance of time-stepping computations for a non-
trivial application, the incompressible Navier--Stokes equations. In particular, for
two benchmark problems, we examined the behavior of a stable integration scheme
for simulating transient behavior for values of the viscosity in the system that are
``subcritical,"" nearly critical (very slightly smaller than the critical value), and super-
critical.

In general, we found that the predictions of instability made by the collocation
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Fig. 20. Short-term evolution for large perturbations, obstacle flow with \nu = 1/185.6.

method were consistent with the behavior of integrators: in the nearly critical regime
(of parameter values, viscosity in this case), there is more sensitivity to perturbation
than in the subcritical regime, and outcomes are qualitatively like those for supercrit-
ical parameters. We also note that making such assessments is complicated somewhat
by the delicate nature of computations in regimes at or near stability limits. Eigen-
values and pseudoeigenvalues are not the sole determining factor affecting stability;
the form of the perturbation also plays a significant role.
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