
SIAM J. MATRIX ANAL. APPL. c� 2018 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. 492–509

A LOW-RANK MULTIGRID METHOD FOR THE STOCHASTIC
STEADY-STATE DIFFUSION PROBLEM⇤

HOWARD C. ELMAN† AND TENGFEI SU‡

Abstract. We study a multigrid method for solving large linear systems of equations with
tensor product structure. Such systems are obtained from stochastic finite element discretization
of stochastic partial di↵erential equations such as the steady-state di↵usion problem with random
coe�cients. When the variance in the problem is not too large, the solution can be well approximated
by a low-rank object. In the proposed multigrid algorithm, the matrix iterates are truncated to low
rank to reduce memory requirements and computational e↵ort. The method is proved convergent
with an analytic error bound. Numerical experiments show its e↵ectiveness in solving the Galerkin
systems compared to the original multigrid solver, especially when the number of degrees of freedom
associated with the spatial discretization is large.

Key words. stochastic finite element method, multigrid, low-rank approximation

AMS subject classifications. 35R60, 60H15, 60H35, 65F10, 65N30, 65N55

DOI. 10.1137/17M1125170

1. Introduction. Stochastic partial di↵erential equations (SPDEs) arise from
physical applications where the parameters of the problem are subject to uncertainty.
Discretization of SPDEs gives rise to large linear systems of equations which are com-
putationally expensive to solve. These systems are in general sparse and structured.
In particular, the coe�cient matrix can often be expressed as a sum of tensor products
of smaller matrices [6, 16, 17]. For such systems it is natural to use an iterative solver
where the coe�cient matrix is never explicitly formed and matrix-vector products
are computed e�ciently. One way to further reduce costs is to construct low-rank
approximations to the desired solution. The iterates are truncated so that the so-
lution method handles only low-rank objects in each iteration. This idea has been
used to reduce the costs of iterative solution algorithms based on Krylov subspaces.
For example, a low-rank conjugate gradient method was given in [12], and low-rank
generalized minimal residual methods have been studied in [2, 13]. Also, a geometric
multigrid method for tensor structured linear systems in high spatial dimensions was
briefly discussed in [10].

In this study, we propose a low-rank multigrid method for solving the Galerkin
systems. We consider a steady-state di↵usion equation with random di↵usion coe�-
cient as a model problem, and we use the stochastic finite element method (SFEM;
see [1, 7, 8]) for the discretization of the problem. The resulting Galerkin system
has tensor product structure and, moreover, quantities used in the computation, such
as the solution sought, can be expressed in matrix format. It has been shown that
such systems admit low-rank approximate solutions [3, 12]. In our proposed multi-

⇤Received by the editors April 11, 2017; accepted for publication (in revised form) by L. Grasedyck
November 14, 2017; published electronically March 15, 2018.

http://www.siam.org/journals/simax/39-1/M112517.html
Funding: The work of the authors was supported by the U.S. Department of Energy Of-

fice of Advanced Scientific Computing Research, Applied Mathematics program under award DE-
SC0009301 and by the U.S. National Science Foundation under grant DMS1418754.

†Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742 (elman@cs.umd.edu).

‡Applied Mathematics & Statistics, and Scientific Computation Program, University of Maryland,
College Park, MD 20742 (tengfesu@math.umd.edu).

492



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 493

grid solver, the matrix iterates are truncated to have low rank in each iteration. We
derive an analytic bound for the error of the solution and show the convergence of the
algorithm. We note that a convergence analysis for an iterative fixed-point-like pro-
cess with truncation was studied in [11]. We demonstrate using benchmark problems
that the low-rank multigrid solver is often more e�cient than a solver that does not
use truncation, and that it is especially advantageous in reducing computing time for
large-scale problems.

An outline of the paper is as follows. In section 2 we state the problem and
briefly review the SFEM and the multigrid solver for the stochastic Galerkin system
from which the new technique is derived. In section 3 we discuss the idea of low-
rank approximation and introduce the multigrid solver with low-rank truncation. A
convergence analysis of the low-rank multigrid solver is also given in this section. The
results of numerical experiments are shown in section 4 to test the performance of the
algorithm, and some conclusions are drawn in the last section.

2. Model problem. Consider the stochastic steady-state di↵usion equation
with homogeneous Dirichlet boundary conditions

(2.1)

(
�r · (c(x,!)ru(x,!)) = f(x) in D ⇥ ⌦,

u(x,!) = 0 on @D ⇥ ⌦.

Here D is a spatial domain and ⌦ is a sample space with �-algebra F and probability
measure P . The di↵usion coe�cient c(x,!) : D ⇥ ⌦ ! R is a random field. We
consider the case where the source term f is deterministic. The stochastic Galerkin
formulation of (2.1) uses a weak formulation: find u(x,!) 2 V = H1

0 (D) ⌦ L2(⌦)
satisfying

(2.2)

Z

⌦

Z

D
c(x,!)ru(x,!) ·rv(x,!)dxdP =

Z

⌦

Z

D
f(x)v(x,!)dxdP

for all v(x,!) 2 V. The problem is well posed if c(x,!) is bounded and strictly
positive, i.e.,

0 < c1  c(x,!)  c2 < 1, a.e. 8x 2 D,

so that the Lax–Milgram lemma establishes existence and uniqueness of the weak
solution.

We will assume that the stochastic coe�cient c(x,!) is represented as a truncated
Karhunen–Loève (KL) expansion [14, 15], in terms of a finite collection of uncorrelated
random variables {⇠l}ml=1:

(2.3) c(x,!) ⇡ c0(x) +
mX

l=1

p
�lcl(x)⇠l(!),

where c0(x) is the mean function, (�l, cl(x)) is the lth eigenpair of the covariance func-
tion r(x, y), and the eigenvalues {�l} are assumed to be in nonincreasing order. In sec-
tion 4 we will further assume these random variables are independent and identically
distributed. Let ⇢(⇠) be the joint density function and � be the joint image of {⇠l}ml=1.
The weak form of (2.1) is then given as follows: find u(x, ⇠) 2 W = H1

0 (D) ⌦ L2(�)
s.t.

(2.4)

Z

�
⇢(⇠)

Z

D
c(x, ⇠)ru(x, ⇠) ·rv(x, ⇠)dxd⇠ =

Z

�
⇢(⇠)

Z

D
f(x)v(x, ⇠)dxd⇠

for all v(x, ⇠) 2 W.



494 HOWARD C. ELMAN AND TENGFEI SU

2.1. Stochastic finite element method. We briefly review the SFEM as de-
scribed in [1, 7]. This method approximates the weak solution of (2.1) in a finite-
dimensional subspace

(2.5) Whp = Sh ⌦ T p = span{�(x) (⇠) | �(x) 2 Sh, (⇠) 2 T p},

where Sh and T p are finite-dimensional subspaces of H1
0 (D) and L2(�). We will

use quadrilateral elements and piecewise bilinear basis functions {�(x)} for the dis-
cretization of the physical space H1

0 (D), and generalized polynomial chaos [21] for the
stochastic basis functions { (⇠)}. The latter are m-dimensional orthogonal polyno-
mials whose total degree does not exceed p. The orthogonality relation means

Z

�
 r(⇠) s(⇠)⇢(⇠)d⇠ = �rs

Z

�
 2
r(⇠)⇢(⇠)d⇠.

For instance, Legendre polynomials are used if the random variables have uniform
distribution with zero mean and unit variance. The number of degrees of freedom in
T p is

N⇠ =
(m+ p)!

m!p!
.

Given the subspace, now one can write the SFEM solution as a linear combination
of the basis functions,

(2.6) uhp(x, ⇠) =
NxX

j=1

N⇠X

s=1

ujs�j(x) s(⇠),

where Nx is the dimension of the subspace Sh. Substituting (2.3) and (2.6) into (2.4),
and taking the test function as any basis function �i(x) r(⇠) results in the Galerkin
system: find u 2 RNxN⇠ s.t.

(2.7) Au = f .

The coe�cient matrix A can be represented in tensor product notation [17],

(2.8) A = G0 ⌦K0 +
mX

l=1

Gl ⌦Kl,

where {Kl}ml=0 are the sti↵ness matrices and {Gl}ml=0 correspond to the stochastic
part, with entries

(2.9)

G0(r, s) =

Z

�
 r(⇠) s(⇠)⇢(⇠)d⇠, K0(i, j) =

Z

D
c0(x)r�i(x)r�j(x)dx,

Gl(r, s) =

Z

�
⇠l r(⇠) s(⇠)⇢(⇠)d⇠, Kl(i, j) =

Z

D

p
�lcl(x)r�i(x)r�j(x)dx,

l = 1, . . . ,m, r, s = 1, . . . , N⇠, i, j = 1, . . . , Nx. The right-hand side can be written as
a tensor product of two vectors:

(2.10) f = g0 ⌦ f0,



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 495

Fig. 1. Block structure of A. m = 4, p = 1, 2, 3 from left to right. Block size is Nx ⇥Nx.

where

(2.11)

g0(r) =

Z

�
 r(⇠)⇢(⇠)d⇠, r = 1, . . . , N⇠,

f0(i) =

Z

D
f(x)�i(x)dx, i = 1, . . . , Nx.

Note that in the Galerkin system (2.7), the matrix A is symmetric and positive
definite. It is also blockwise sparse (see Figure 1) due to the orthogonality of { r(⇠)}.
The size of the linear system is, in general, very large (NxN⇠ ⇥ NxN⇠). For such
a system it is suitable to use an iterative solver. Multigrid methods are among the
most e↵ective iterative solvers for the solution of discretized elliptic PDEs, capable of
achieving convergence rates that are independent of the mesh size, with computational
work growing only linearly with the problem size [9, 18].

2.2. Multigrid. In this subsection we discuss a geometric multigrid solver pro-
posed in [4] for the solution of the stochastic Galerkin system (2.7). For this method,
the mesh size h varies for di↵erent grid levels, while the polynomial degree p is held
constant, i.e., the fine grid space and coarse grid space are defined as

(2.12) Whp = Sh ⌦ T p, W2h,p = S2h ⌦ T p,

respectively. Then the prolongation and restriction operators are of the form

(2.13) P = I ⌦ P, R = I ⌦ PT ,

where P is the same prolongation matrix as in the deterministic case. On the coarse
grid we only need to construct matrices {K2h

l }ml=0, and

(2.14) A2h = G0 ⌦K2h
0 +

mX

l=1

Gl ⌦K2h
l .

The matrices {Gl}ml=0 are the same for all grid levels.
Algorithm 2.1 describes the complete multigrid method. In each iteration, we

apply one multigrid cycle (Vcycle) for the residual equation

(2.15) Ac(i) = r(i) = f �Au(i)

and update the solution u(i) and residual r(i). The Vcycle function is called recur-
sively. On the coarsest grid level (h = h0) we form matrix A and solve the linear
system directly. The system is of order O(N⇠) since A 2 RNxN⇠⇥NxN⇠ , where Nx is a



496 HOWARD C. ELMAN AND TENGFEI SU

very small number on the coarsest grid. The smoothing function (Smooth) is based
on a matrix splitting A = Q� Z and stationary iteration

(2.16) us+1 = us +Q�1(f �Aus),

which we assume is convergent, i.e., the spectral radius ⇢(I �Q�1A) < 1. The algo-
rithm is run until the specified relative tolerance tol or maximum number of iterations
maxit is reached. It is shown in [4] that for f 2 L2(D), the convergence rate of this
algorithm is independent of the mesh size h, the number of random variables m, and
the polynomial degree p.

Algorithm 2.1: Multigrid for stochastic Galerkin systems.

1: initialization: i = 0, r(0) = f , r0 = kfk2
2: while r > tol ⇤ r0 & i  maxit do
3: c(i) = Vcycle(A,0, r(i))

4: u(i+1) = u(i) + c(i)

5: r(i+1) = f �Au(i+1)

6: r = kr(i+1)k2, i = i+ 1
7: end

8: function uh = Vcycle(Ah,uh
0 , f

h)
9: if h == h0 then

10: solve Ahuh = fh directly
11: else
12: uh = Smooth(Ah,uh

0 , f
h)

13: rh = fh �Ahuh

14: r2h = Rrh

15: c2h = Vcycle(A2h,0, r2h)
16: uh = uh + Pc2h

17: uh = Smooth(Ah,uh, fh)
18: end
19: end

20: function u = Smooth(A,u, f)
21: for ⌫ steps do
22: u = u+Q�1(f �Au)
23: end
24: end

3. Low-rank approximation. In this section we consider a technique designed
to reduce computational e↵ort, in terms of both time and memory use, using low-rank
methods. We begin with the observation that the solution vector of the Galerkin
system (2.7)

u = [u11, u21, . . . , uNx1, . . . , u1N⇠ , u2N⇠ , . . . , uNxN⇠ ]
T 2 RNxN⇠

can be restructured as a matrix

(3.1) U = mat(u) =

0

BBB@

u11 u12 · · · u1N⇠

u21 u22 · · · u2N⇠

...
...

. . .
...

uNx1 uNx2 · · · uNxN⇠

1

CCCA
2 RNx⇥N⇠ .



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 497

Fig. 2. Decay of singular values of solution matrix U . Left: exponential covariance, b = 5,
h = 2�6, m = 8, p = 3. Right: squared exponential covariance, b = 2, h = 2�6, m = 3, p = 3. See
the benchmark problems in section 4.

Then (2.7) is equivalent to a system in matrix format,

(3.2) A(U) = F,

where

(3.3)
A(U) = K0UGT

0 +
mX

l=1

KlUGT
l ,

F = mat(f) = mat(g0 ⌦ f0) = f0g
T
0 .

It has been shown in [3, 12] that the “matricized” version of the solution U can be
well approximated by a low-rank matrix when NxN⇠ is large. Evidence of this can
be seen in Figure 2, which shows the singular values of the exact solution U for the
benchmark problem discussed in section 4. In particular, the singular values decay
exponentially, and low-rank approximate solutions can be obtained by dropping terms
from the singular value decomposition corresponding to small singular values.

Now we use low-rank approximation in the multigrid solver for (3.2). Let U (i) =
mat(u(i)) be the ith iterate, expressed in matricized format,1 and suppose U (i) is
represented as the outer product of two rank-k matrices, i.e., U (i) ⇡ V (i)W (i)T , where
V (i) 2 RNx⇥k, W (i) 2 RN⇠⇥k. This factored form is convenient for implementation
and can be readily used in basic matrix operations. For instance, the sum of two
matrices gives

(3.4) V (i)
1 W (i)T

1 + V (i)
2 W (i)T

2 = [V (i)
1 , V (i)

2 ][W (i)
1 ,W (i)

2 ]T .

1In the following, we use u
(i) and U(i) interchangeably to represent the equivalent vectorized or

matricized quantities.



498 HOWARD C. ELMAN AND TENGFEI SU

Similarly, A(V (i)W (i)T ) can also be written as an outer product of two matrices:
(3.5)

A(V (i)W (i)T ) = (K0V
(i))(G0W

(i))T +
mX

l=1

(KlV
(i))(GlW

(i))T

= [K0V
(i),K1V

(i), . . . ,KmV (i)][G0W
(i), G1W

(i), . . . , GmW (i)]T .

If V (i),W (i) are used to represent iterates in the multigrid solver and k ⌧ min(Nx, N⇠),
then both memory and computational (matrix-vector products) costs can be reduced
from O(NxN⇠) to O((Nx +N⇠)k). Note, however, that the ranks of the iterates may
grow due to matrix additions. For example, in (3.5) the rank may increase from k to
(m+ 1)k in the worst case. A way to prevent this from happening, and also to keep
costs low, is to truncate the iterates and force their ranks to remain low.

3.1. Low-rank truncation. Our truncation strategy is derived using an idea
from [12]. Assume X̃ = Ṽ W̃T , Ṽ 2 RNx⇥k̃, W̃ 2 RN⇠⇥k̃, and X = T (X̃) is truncated
to rank k with X = VWT , V 2 RNx⇥k, W 2 RN⇠⇥k, and k < k̃. First, compute the
QR factorization for both Ṽ and W̃ ,

(3.6) Ṽ = QṼ RṼ , W̃ = QW̃RW̃ , so X̃ = QṼ RṼ R
T
W̃
QT

W̃
.

The matrices RṼ and RW̃ are of size k̃ ⇥ k̃. Next, compute a singular value decom-
position (SVD) of the small matrix RṼ R

T
W̃
:

(3.7) RṼ R
T
W̃

= V̂ diag(�1, . . . ,�k̃)Ŵ
T ,

where �1, . . . ,�k̃ are the singular values in descending order. We can truncate to a
rank-k matrix where k is specified using either a relative criterion for singular values,

(3.8)
q
�2
k+1 + · · ·+ �2

k̃
 ✏rel

q
�2
1 + · · ·+ �2

k̃
,

or an absolute one,

(3.9) k = max{k | �k � ✏abs}.

Then the truncated matrices can be written in MATLAB notation as

(3.10) V = QṼ V̂ (:, 1 : k), W = QW̃ Ŵ (:, 1 : k)diag(�1, . . . ,�k).

Note that the low-rank matrices X obtained from (3.8) and (3.9) satisfy

(3.11) kX � X̃kF  ✏relkX̃kF

and

(3.12) kX � X̃kF  ✏abs

q
k̃ � k,

respectively. The right-hand side of (3.12) is bounded by
p
N⇠✏abs,   m+2, since

in the worst case, there is a sum of m + 2 matrices (see line 13 of Algorithm 3.1),
and in general N⇠ < Nx. The total cost of this computation is O((Nx +N⇠ + k̃)k̃2).
In the case where k̃ becomes larger than N⇠, we compute instead a direct SVD for
X̃, which requires a matrix-matrix product to compute X̃ and an SVD, with smaller
total cost O(NxN⇠k̃ +NxN2

⇠ ).



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 499

(a) (b)

Fig. 3. (a) Singular values of the coarse-grid correction matrix C(i) at multigrid iteration
i = 0, 1, . . . , 5. (b) Singular values of correction matrices C2h in the first multigrid iteration at
various grid-refinement levels, for grid sizes h = 2/2nc, nc = 4, 5, 6, 7. No truncation is introduced,
� = 0.01, b = 5, h = 2�6, m = 8, p = 3. See the benchmark problem in section 4.1.

3.2. Low-rank multigrid. The multigrid solver with low-rank truncation is
given in Algorithm 3.1. It uses truncation operators Trel and Tabs, which are defined
using a relative and an absolute criterion, respectively. In each iteration, one multigrid
cycle (Vcycle) is applied to the residual equation. Since the overall magnitudes of
the singular values of the correction matrix C(i) decrease as U (i) converges to the
exact solution (see Figure 3(a), for example), it is suitable to use a relative truncation
tolerance ✏rel inside the Vcycle function. It is also shown in Figure 3(b) that in each
multigrid iteration, the singular values for the correction matrices C2h at grids at all
levels decay in a similar manner. In the smoothing function (Smooth), the iterate is
truncated after each smoothing step using a relative criterion

(3.13) kTrel1(U)� UkF  ✏relkFh �Ah(Uh
0 )kF ,

where Ah, Uh
0 , and Fh are arguments of the Vcycle function, and Fh �Ah(Uh

0 ) is
the residual at the beginning of each V-cycle. In line 13, the residual is truncated via
a more stringent relative criterion

(3.14) kTrel2(Rh)�RhkF  ✏relhkFh �Ah(Uh
0 )kF ,

where h is the mesh size. In the main while loop, an absolute truncation criterion
(3.9) with tolerance ✏abs is used and all the singular values of U (i) below ✏abs are
dropped. The algorithm is terminated either when the largest singular value of the
residual matrix R(i) is smaller than ✏abs or when the multigrid solution reaches the
specified accuracy (see (3.44)).

Note that the postsmoothing is not explicitly required in Algorithms 2.1 and 3.1,
and we include it just for the sake of completeness. Also, in Algorithm 3.1, if the



500 HOWARD C. ELMAN AND TENGFEI SU

Algorithm 3.1: Multigrid with low-rank truncation.

1: initialization: i = 0, R(0) = F in low-rank format, r0 = kFkF
2: while r > tol ⇤ r0 & i  maxit do
3: C(i) = Vcycle(A, 0, R(i))

4: Ũ (i+1) = U (i) + C(i), U (i+1) = Tabs(Ũ (i+1))

5: R̃(i+1) = F �A(U (i+1)), R(i+1) = Tabs(R̃(i+1))

6: r = kR(i+1)kF , i = i+ 1
7: end

8: function Uh = Vcycle(Ah, Uh
0 , F

h)
9: if h == h0 then

10: solve Ah(Uh) = Fh directly
11: else
12: Uh = Smooth(Ah, Uh

0 , F
h)

13: R̃h = Fh �Ah(Uh), Rh = Trel2(R̃h)
14: R2h = R(Rh)
15: C2h = Vcycle(A2h, 0, R2h)
16: Uh = Uh + P(C2h)
17: Uh = Smooth(Ah, Uh, Fh)
18: end
19: end

20: function U = Smooth(A,U, F )
21: for ⌫ steps do
22: Ũ = U + S (F �A(U)), U = Trel1(Ũ)
23: end
24: end

smoothing operator has the form S = S1 ⌦ S2, then for any matrix with a low-rank
factorization X = VWT , application of the smoothing operator gives

(3.15) S (X) = S (VWT ) = (S2V )(S1W )T ,

so that the result is again the outer product of two matrices of the same low rank. The
prolongation and restriction operators (2.13) are implemented in a similar manner.
Thus, the smoothing and grid-transfer operators do not a↵ect the ranks of matricized
quantities in Algorithm 3.1.

3.3. Convergence analysis. In order to show that Algorithm 3.1 is convergent,
we need to know how truncation a↵ects the contraction of error. Consider the case of
a two-grid algorithm for the linear system Au = f , where the coarse-grid solve is exact
and no postsmoothing is done. Let Ā be the coe�cient matrix on the coarse grid, let
e(i) = u � u(i) be the error associated with u(i), and let r(i) = f � Au(i) = Ae(i) be
the residual. It is shown in [4] that if no truncation is done, the error after a two-grid
cycle becomes

(3.16) e(i+1)
notrunc = (A�1 � PĀ�1R)A(I �Q�1A)⌫e(i)

and

(3.17) ke(i+1)
notrunckA  C⌘(⌫)ke(i)kA,



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 501

where ⌫ is the number of presmoothing steps, C is a constant, and ⌘(⌫) ! 0 as
⌫ ! 1. The proof consists of establishing the smoothing property

(3.18) kA(I �Q�1A)⌫yk2  ⌘(⌫)kykA 8y 2 RNxN⇠ ,

and the approximation property

(3.19) k(A�1 � PĀ�1R)ykA  Ckyk2 8y 2 RNxN⇠ ,

and applying these bounds to (3.16).
Now we derive an error bound for Algorithm 3.1. The result is presented in two

steps. First, we consider the Vcycle function only; the following lemma shows the
e↵ect of the relative truncations defined in (3.13) and (3.14).

Lemma 3.1. Let u(i+1) = Vcycle(A,u(i), f) and let e(i+1) = u � u(i+1) be the
associated error. Assume a damped Jacobi smoother is used (see (4.4)). Then

(3.20) ke(i+1)kA  C1(⌫)ke(i)kA,

where, for small enough ✏rel and large enough ⌫, C1(⌫) < 1 independent of the mesh
size h.

Proof. For s = 1, . . . , ⌫, let ũ(i)
s be the quantity computed after application of

the smoothing operator at step s before truncation, and let u(i)
s be the modification

obtained from truncation by Trel1 of (3.13). For example,

(3.21) ũ(i)
1 = u(i) +Q�1(f �Au(i)), u(i)

1 = Trel1(ũ
(i)
1 ).

Denote the associated error as e(i)s = u� u(i)
s . From (3.13), we have

(3.22) e(i)1 = (I �Q�1A)e(i) + �(i)1 , where k�(i)1 k2  ✏relkr(i)k2.

Similarly, after ⌫ smoothing steps,

(3.23)
e(i)⌫ = (I �Q�1A)⌫e(i) +�(i)

⌫

= (I �Q�1A)⌫e(i) + (I �Q�1A)⌫�1�(i)1 + · · ·+ (I �Q�1A)�(i)⌫�1 + �(i)⌫ ,

where

(3.24) k�(i)s k2  ✏relkr(i)k2, s = 1, . . . , ⌫.

In line 13 of Algorithm 3.1, the residual r̃(i)⌫ = Ae(i)⌫ is truncated to r(i)⌫ via (3.14), so
that

(3.25) kr(i)⌫ � r̃(i)⌫ k2  ✏relhkr(i)k2.

Let ⌧ (i) = r(i)⌫ � r̃(i)⌫ . Referring to (3.16) and (3.23), we can write the error associated
with u(i+1) as

(3.26)

e(i+1) = e(i)⌫ � PĀ�1Rr(i)⌫

= (I � PĀ�1RA)e(i)⌫ � PĀ�1R⌧ (i)

= e(i+1)
notrunc + (A�1 � PĀ�1R)A�(i)

⌫ � PĀ�1R⌧ (i)

= e(i+1)
notrunc + (A�1 � PĀ�1R)(A�(i)

⌫ + ⌧ (i))�A�1⌧ (i).



502 HOWARD C. ELMAN AND TENGFEI SU

Applying the approximation property (3.19) gives

(3.27) k(A�1 � PĀ�1R)(A�(i)
⌫ + ⌧ (i))kA  C(kA�(i)

⌫ k2 + k⌧ (i)k2).

Using the fact that for any matrix B 2 RNxN⇠⇥NxN⇠ ,

(3.28) sup
y 6=0

kBykA
kykA

= sup
y 6=0

kA1/2Byk2
kA1/2yk2

= sup
z 6=0

kA1/2BA�1/2zk2
kzk2

= kA1/2BA�1/2k2,

we get

(3.29)

kA(I �Q�1A)⌫�s�(i)s k2  kA1/2k2 k(I �Q�1A)⌫�s�(i)s kA
 kA1/2k2 kA1/2(I �Q�1A)⌫�sA�1/2k2 k�(i)s kA
 ⇢(I �Q�1A)⌫�skA1/2k22 k�(i)s k2,

where ⇢ is the spectral radius. We have used the fact that A1/2(I �Q�1A)⌫�sA�1/2

is a symmetric matrix (since Q is symmetric). Define

d1(⌫) = (⇢(I �Q�1A)⌫�1 + · · ·+ ⇢(I �Q�1A) + 1)kA1/2k22.

Then (3.24) and (3.25) imply that

(3.30)
kA�(i)

⌫ k2 + k⌧ (i)k2  ✏rel(d1(⌫) + h)kr(i)k2
 ✏rel(d1(⌫) + h)kA1/2k2 ke(i)kA.

On the other hand,

(3.31)

kA�1⌧ (i)kA = (A�1⌧ (i), ⌧ (i))1/2  kA�1k1/22 k⌧ (i)k2
 ✏relhkA�1k1/22 kr(i)k2
 ✏relhkA�1k1/22 kA1/2k2 ke(i)kA.

Combining (3.17), (3.26), (3.27), (3.30), and (3.31), we conclude that

(3.32) ke(i+1)kA  C1(⌫)ke(i)kA,

where

(3.33) C1(⌫) = C⌘(⌫) + ✏rel(C(d1(⌫) + h) + hkA�1k1/22 )kA1/2k2.

Note that ⇢(I �Q�1A) < 1, kAk2 is bounded by a constant, and kA�1k2 is of order
O(h�2) [17]. Thus, for small enough ✏rel and large enough ⌫, C1(⌫) is bounded below
1 independent of h.

Next, we adjust this argument by considering the e↵ect of the absolute truncations
in the main while loop. In Algorithm 3.1, the Vcycle is used for the residual
equation, and the updated solution ũ(i+1) and residual r̃(i+1) are truncated to u(i+1)

and r(i+1), respectively, using an absolute truncation criterion as in (3.9). Thus, at
the ith iteration (i > 1), the residual passed to the Vcycle function is in fact a
perturbed residual, i.e.,

(3.34) r(i) = r̃(i) + � = Ae(i) + �, where k�k2 
p
N⇠✏abs.



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 503

It follows that in the first smoothing step,

(3.35) ũ(i)
1 = u(i) +Q�1(f �Au(i) + �), u(i)

1 = Trel1(ũ
(i)
1 ),

and this introduces an extra term in �(i)
⌫ (see (3.23)),

(3.36) �(i)
⌫ = (I�Q�1A)⌫�1�(i)1 + · · ·+(I�Q�1A)�(i)⌫�1+�

(i)
⌫ �(I�Q�1A)⌫�1Q�1�.

As in the derivation of (3.29), we have

(3.37) kA(I �Q�1A)⌫�1Q�1�k2  ⇢(I �Q�1A)⌫�1kA1/2k22 kQ�1k2 k�k2.

In the case of a damped Jacobi smoother, kQ�1k2 is bounded by a constant. Denote
d2(⌫) = ⇢(I �Q�1A)⌫�1kA1/2k22 kQ�1k2. Also note that kr(i)k2  kA1/2k2 ke(i)kA +
k�k2. Then (3.30) and (3.31) are modified to

(3.38)

kA�(i)
⌫ k2 + k⌧ (i)k2

 ✏rel(d1(⌫) + h)kr(i)k2 + d2(⌫)k�k2
 ✏rel(d1(⌫) + h)kA1/2k2 ke(i)kA + (d2(⌫) + ✏rel(d1(⌫) + h))k�k2

and

(3.39) kA�1⌧ (i)kA  ✏relhkA�1k1/22 kA1/2k2 ke(i)kA + ✏relhkA�1k1/22 k�k2.

As we truncate the updated solution ũ(i+1), we have

(3.40) u(i+1) = ũ(i+1) + �, where k�k2 
p
N⇠✏abs.

Let

(3.41) C2(⌫) = (Cd2(⌫) + ✏rel(C(d1(⌫) + h) + hkA�1k1/22 ) + kA1/2k2)
p
.

From (3.38)–(3.41), we conclude with the following theorem.

Theorem 3.2. Let e(i) = u � u(i) denote the error at the ith iteration of Algo-
rithm 3.1. Then

(3.42) ke(i+1)kA  C1(⌫)ke(i)kA + C2(⌫)
p

N⇠✏abs,

where C1(⌫) < 1 for large enough ⌫ and small enough ✏rel, and C2(⌫) is bounded by a
constant. Also, (3.42) implies that

(3.43) ke(i)kA  Ci
1(⌫)ke(0)kA +

1� Ci
1(⌫)

1� C1(⌫)
C2(⌫)

p
N⇠✏abs,

i.e., the A-norm of the error for the low-rank multigrid solution at the ith iteration
is bounded by Ci

1(⌫)ke(0)kA + O(
p
N⇠✏abs). Thus, Algorithm 3.1 converges until the

A-norm of the error becomes as small as O(
p
N⇠✏abs).



504 HOWARD C. ELMAN AND TENGFEI SU

In the proof above, it is convenient to consider the damped Jacobi smoother
in that the matrix Q is symmetric and kQ�1k2 is bounded. In fact, one can use
the smoothing property (3.18) to bound (3.29), which does not require symmetry
in Q, and the proof can be generalized for any smoother with bounded kQ�1k2.
Also, it can be shown that the result in Theorem 3.2 holds if postsmoothing is used.
The convergence of full (recursive) multigrid with these truncation operations can be
established following an inductive argument analogous to that in the deterministic
case (see, e.g., [5, 9]). Besides, in Algorithm 3.1, the truncation on r̃(i+1) imposes a
stopping criterion, i.e.,

(3.44)
kr̃(i+1)k2  kr̃(i+1) � r(i+1)k2 + kr(i+1)k2


p
N⇠✏abs + tol ⇤ r0.

In section 4 we will vary the value of ✏abs and see how the low-rank multigrid solver
works compared with Algorithm 2.1 where no truncation is done.

Remark 3.3. It is shown in [17] that for (2.7), with constant mean c0 and standard
deviation �,

(3.45) kAk2 = ↵

 
c0 + �Cmax

p+1

mX

l=1

p
�lkcl(x)k1

!
,

where Cmax
p+1 is the maximal root of an orthogonal polynomial of degree p+ 1, and ↵

is a constant independent of h, m, and p. If Legendre polynomials on the interval
[�1, 1] are used, Cmax

p+1 < 1. Since both C1 and C2 in Theorem 3.2 are related to kAk2,
the convergence rate of Algorithm 3.1 will depend on m. However, if the eigenvalues
{�l} decay fast, this dependence is negligable.

Remark 3.4. As shown in (3.33), the factor h in the truncation criterion (3.14)
is introduced to compensate for the order O(h�2) of kA�1k2. Arguments similar to
those in [17] can also be used to show that if A comes from a model where the di↵usion
coe�cient is a lognormal random field, then kA�1k2 = O(h�2) (see the discussions in
[6, 20]), and the error bound in Theorem 3.2 is still valid.

Remark 3.5. If, instead, a relative truncation is used in the while loop so that

(3.46) r(i+1) = r̃(i+1) + � = Ae(i+1) + �, where k�k2  ✏relkr̃(i+1)k2,

then a similar convergence result can be derived, and the algorithm stops when

(3.47) kr̃(i+1)k2  tol ⇤ r0
1� ✏rel

.

However, the relative truncation in general results in a larger rank for r(i), and the
improvement in e�ciency will be less significant.

4. Numerical experiments. Consider the benchmark problem with a two-
dimensional spatial domain D = (�1, 1)2 and constant source term f = 1. We look
at two di↵erent forms for the covariance function r(x, y) of the di↵usion coe�cient
c(x,!).



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 505

4.1. Exponential covariance. The exponential covariance function takes the
form

(4.1) r(x, y) = �2exp

✓
�1

b
kx� yk1

◆
.

This is a convenient choice because there are known analytic solutions for the eigenpair
(�l,cl(x)) [7]. In the KL expansion, take c0(x) = 1 and {⇠l}ml=1 independent and
uniformly distributed on [�1, 1]:

(4.2) c(x,!) = c0(x) +
p
3

mX

l=1

p
�lcl(x)⇠l(!).

Then
p
3⇠l has zero mean and unit variance, and Legendre polynomials are used as

basis functions for the stochastic space. The correlation length b a↵ects the decay of
{�l} in the KL expansion. The number of random variables m is chosen so that

(4.3)

 
mX

l=1

�l

!. MX

l=1

�l

!
� 95%.

Here M is a large number which we set as 1000.
We now examine the performance of the multigrid solver with low-rank trunca-

tion. We employ a damped Jacobi smoother, with

(4.4) Q =
1

!
diag(A) =

1

!
I ⌦ diag(K0)

(since G0 = I and diag(Gl) = 0 for l = 1, . . . ,m), and the parameter value ! = 2/3.
Apply three smoothing steps (⌫ = 3) in the Smooth function. Set the multigrid tol =
10�6. As shown in (3.44), the relative residual kF �A(U (i))kF /kFkF for the solution
U (i) produced in Algorithm 3.1 is related to the value of the truncation tolerance ✏abs.
In all the experiments, we also run the multigrid solver without truncation to reach a
relative residual that is closest to what we get from the low-rank multigrid solver. We
fix the relative truncation tolerance ✏rel as 10�2. (The truncation criteria in (3.13)
and (3.14) are needed for the analysis. In practice we found the performance with
the relative criterion in (3.11) to be essentially the same as the results shown in this
section.) The numerical results, i.e., the rank of the multigrid solution, the number of
iterations, and the elapsed time (in seconds) for solving the Galerkin system, are given
in Tables 1 to 3. In all the tables, the 3rd and 4th columns are the results of low-rank
multigrid with di↵erent values of truncation tolerance ✏abs, and for comparison the
last two columns show the results for the multigrid solver without truncation. The
Galerkin systems are generated from the Incompressible Flow and Iterative Solver
Software (IFISS, [19]). All computations are done in MATLAB 9.1.0 (R2016b) on a
MacBook with 1.6 GHz Intel Core i5 and 4 GB SDRAM.

Table 1 shows the performance of the multigrid solver for various mesh sizes h, or
spatial degrees of freedom Nx, with other parameters fixed. The 3rd and 5th columns
show that multigrid with low-rank truncation uses less time than the standard multi-
grid solver. This is especially true when Nx is large: for h = 2�8, Nx = 261121,
low-rank approximation reduces the computing time from 2857 s to 370 s. The im-
provement is much more significant (see the 4th and 6th columns) if the problem does
not require very high accuracy for the solution. Table 2 shows the results for various



506 HOWARD C. ELMAN AND TENGFEI SU

Table 1
Performance of multigrid solver with ✏abs = 10�6, 10�4, and no truncation for various Nx =

(2/h� 1)2. Exponential covariance, � = 0.01, b = 4, m = 11, p = 3, N⇠ = 364.

✏abs = 10�6 ✏abs = 10�4 No truncation

64⇥ 64 grid
h = 2�5

Nx = 3969

Rank 51 12
Iterations 5 4 5 4
Elapsed time 6.26 1.63 12.60 10.08
Rel residual 1.51e-6 6.05e-5 9.97e-7 1.38e-5

128⇥ 128 grid
h = 2�6

Nx = 16129

Rank 51 12
Iterations 6 4 5 3
Elapsed time 20.90 5.17 54.59 32.92
Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

256⇥ 256 grid
h = 2�7

Nx = 65025

Rank 49 13
Iterations 5 4 5 3
Elapsed time 76.56 24.31 311.27 188.70
Rel residual 4.47e-6 2.07e-4 1.36e-6 2.35e-04

512⇥ 512 grid
h = 2�8

Nx = 261121

Rank 39 16
Iterations 5 3 4 3
Elapsed time 370.98 86.30 2857.82 2099.06
Rel residual 9.93e-6 4.33e-4 1.85e-5 2.43e-4

Table 2
Performance of multigrid solver with ✏abs = 10�6, 10�4, and no truncation for various N⇠ =

(m+ p)!/(m!p!). Exponential covariance, � = 0.01, h = 2�6, p = 3, Nx = 16129.

✏abs = 10�6 ✏abs = 10�4 No truncation
Rank 25 9

b = 5,m = 8 Iterations 5 4 5 3
N⇠ = 165 Elapsed time 5.82 1.71 19.33 11.65

Rel residual 5.06e-6 3.41e-4 1.22e-6 2.20e-4
Rank 51 12

b = 4,m = 11 Iterations 6 4 5 3
N⇠ = 364 Elapsed time 20.90 5.17 54.59 32.92

Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4
Rank 91 23

b = 3,m = 16 Iterations 6 5 5 4
N⇠ = 969 Elapsed time 97.34 16.96 197.82 158.56

Rel residual 5.71e-7 3.99e-5 1.23e-6 1.63e-5
Rank 165 86

b = 2.5,m = 22 Iterations 6 5 6 4
N⇠ = 2300 Elapsed time 648.59 172.41 1033.29 682.45

Rel residual 1.59e-7 8.57e-6 9.29e-8 1.63e-5

degrees of freedom N⇠ in the stochastic space. The multigrid solver with absolute
truncation tolerance 10�6 is more e�cient compared to no truncation in all cases and
uses only about half the time. The 4th and 6th columns indicate that the decrease
in computing time by low-rank truncation is more obvious with the larger tolerance
10�4.

We have observed that when the standard deviation � in the covariance function
(4.1) is smaller, the singular values of the solution matrix U decay faster (see Figure 2),
and it is more suitable for low-rank approximation. This is also shown in the numerical
results. In the previous cases, we fixed � as 0.01. In Table 3, the advantage of low-
rank multigrid is clearer for a smaller �, and the solution is well approximated by a
matrix of smaller rank. On the other hand, as the value of � increases, the singular
values of the matricized solution, as well as the matricized iterates, decay more slowly
and the same truncation criterion gives higher-rank objects. Thus, the total time



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 507

Table 3
Performance of multigrid solver with ✏abs = 10�6, 10�4, and no truncation for various �.

Time spent on truncation is given in parentheses. Exponential covariance, b = 4, h = 2�6, m = 11,
p = 3, Nx = 16129, N⇠ = 364.

✏abs = 10�6 ✏abs = 10�4 No truncation

� = 0.001

Rank 13 12
Iterations 6 4 5 4
Elapsed time 7.61 (4.77) 3.73 (2.29) 54.43 43.58
Rel residual 1.09e-6 6.53e-5 1.22e-6 1.63e-5

� = 0.01

Rank 51 12
Iterations 6 4 5 3
Elapsed time 20.90 (15.05) 5.17 (3.16) 54.59 32.92
Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

� = 0.1

Rank 136 54
Iterations 6 4 5 3
Elapsed time 54.44 (33.91) 18.12 (12.70) 55.49 33.62
Rel residual 3.28e-6 2.47e-4 1.88e-6 2.62e-4

� = 0.3

Rank 234 128
Iterations 9 7 8 4
Elapsed time 138.63 (77.54) 60.96 (38.66) 86.77 43.42
Rel residual 6.03e-6 4.71e-4 2.99e-6 7.76e-4

for solving the system and the time spent on truncation will also increase. Another
observation from the above numerical experiments is that the iteration counts are
largely una↵ected by truncation. In Algorithm 3.1, similar numbers of iterations are
required to reach a comparable accuracy as in the cases with no truncation.

4.2. Squared exponential covariance. In the second example we consider
covariance function

(4.5) r(x, y) = �2exp

✓
� 1

b2
kx� yk22

◆
.

The eigenpair (�l, cl(x)) is computed via a Galerkin approximation of the eigenvalue
problem

(4.6)

Z

D
r(x, y)cl(y)dy = �lcl(x).

Again, in the KL expansion (4.2), take c0(x) = 1 and {⇠l}ml=1 independent and uni-
formly distributed on [�1, 1]. The eigenvalues of the squared exponential covariance
(4.5) decay much faster than those of (4.1), and thus fewer terms are required to sat-
isfy (4.3). For instance, for b = 2, m = 3 will su�ce. Table 4 shows the performance
of multigrid with low-rank truncation for various spatial degrees of freedom Nx. In
this case, we are able to work with finer meshes since the value of N⇠ is smaller. In all
experiments the low-rank multigrid solver uses less time compared with no truncation.

5. Conclusions. In this work we focused on the multigrid solver, one of the
most e�cient iterative solvers, for the stochastic steady-state di↵usion problem. We
discussed how to combine the idea of low-rank approximation with multigrid to reduce
computational costs. We proved the convergence of the low-rank multigrid method
with an analytic error bound. It was shown in numerical experiments that the low-
rank truncation is useful in decreasing the computing time when the variance of the
random coe�cient is relatively small. The proposed algorithm also exhibited great
advantage for problems with a large number of spatial degrees of freedom.



508 HOWARD C. ELMAN AND TENGFEI SU

Table 4
Performance of multigrid solver with ✏abs = 10�6, 10�4, and no truncation for various Nx =

(2/h� 1)2. Squared exponential covariance, � = 0.01, b = 2, m = 3, p = 3, N⇠ = 20.

✏abs = 10�6 ✏abs = 10�4 No truncation

128⇥ 128 grid
h = 2�6

Nx = 16129

Rank 9 4
Iterations 5 3 4 3
Elapsed time 0.78 0.35 1.08 0.82
Rel residual 1.20e-5 9.15e-4 1.63e-5 2.20e-4

256⇥ 256 grid
h = 2�7

Nx = 65025

Rank 8 4
Iterations 4 3 4 3
Elapsed time 2.55 1.31 4.58 3.46
Rel residual 3.99e-5 9.09e-4 1.78e-05 2.35e-4

512⇥ 512 grid
h = 2�8

Nx = 261121

Rank 8 2
Iterations 4 2 4 2
Elapsed time 10.23 2.13 18.93 9.61
Rel residual 6.41e-5 6.91e-3 1.85e-5 3.29e-3

1024⇥ 1024 grid
h = 2�9

Nx = 1045629

Rank 8 2
Iterations 4 2 4 2
Elapsed time 58.09 10.66 115.75 63.54
Rel residual 6.41e-5 6.93e-3 1.90e-5 3.32e-3

REFERENCES

[1] I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of
stochastic elliptic partial di↵erential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–
825.

[2] J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor format,
Numer. Linear Algebra Appl., 20 (2013), pp. 27–43.

[3] P. Benner, A. Onwunta, and M. Stoll, Low-rank solution of unsteady di↵usion equations
with stochastic coe�cients, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 622–649.

[4] H. Elman and D. Furnival, Solving the stochastic steady-state di↵usion problem using multi-
grid, IMA J. Numer. Anal., 27 (2007), pp. 675–688.

[5] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
With Applications in Incompressible Fluid Dynamics, 2nd ed., Oxford University Press,
Oxford, 2014.

[6] O. G. Ernst and E. Ullmann, Stochastic Galerkin matrices, SIAM J. Matrix Anal. Appl., 31
(2010), pp. 1848–1872.

[7] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover,
New York, 2003.

[8] C. J. Gittelson, Convergence rates of multilevel and sparse tensor approximations for a
random elliptic PDE, SIAM J. Numer. Anal., 51 (2013), pp. 2426–2447.

[9] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
[10] W. Hackbusch, Solution of linear systems in high spatial dimensions, Comput. Vis. Sci., 17

(2015), pp. 111–118.
[11] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov, Approximate iterations for

structured matrices, Numer. Math., 109 (2008), pp. 365–383.
[12] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized

linear systems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288–1316.
[13] K. Lee and H. C. Elman, A preconditioned low-rank projection method with a rank-reduction

scheme for stochastic partial di↵erential equations, SIAM J. Sci. Comput., 39 (2017),
pp. S828–S850.

[14] M. Loève, Probability Theory, Van Nostrand, New York, 1960.
[15] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic

PDEs, Cambridge University Press, New York, 2014.
[16] H. G. Matthies and E. Zander, Solving stochastic systems with low-rank tensor compression,

Linear Algebra Appl., 436 (2012), pp. 3819–3838.
[17] C. E. Powell and H. C. Elman, Block-diagonal preconditioning for spectral stochastic finite-

element systems, IMA J. Numer. Anal., 29 (2009), pp. 350–375.
[18] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.



LOW-RANK MULTIGRID FOR STOCHASTIC DIFFUSION 509

[19] D. Silvester, H. Elman, and A. Ramage, IFISS, Incompressible Flow and Iterative Solver
Software, Ver. 3.4, http://www.manchester.ac.uk/ifiss (2015).

[20] E. Ullmann, A Kronecker product preconditioner for stochastic Galerkin finite element dis-
cretizations, SIAM J. Sci. Comput., 32 (2010), pp. 923–946.

[21] D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized
polynomial chaos, J. Comput. Phys., 187 (2003), pp. 137–167.


