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FOURIER ANALYSIS OF ITERATIVE METHODS FOR ELLIPTIC
PROBLEMS*

TONY F. CHAN" AND HOWARD C. ELMAN

Abstract. This paper presents a Fourier method for analyzing stationary iterative methods and
preconditioners for discretized elliptic boundary value problems. As in the von Neumann stability analysis
ofhyperbolic and parabolic problems, the approach is easier to apply, reveals more details about convergence
properties than about standard techniques, and can be applied in a systematic way to a wide class of
numerical methods. Although the analysis is applicable only to periodic problems, the results essentially
reproduce those of classical convergence and condition number analysis for problems with other boundary
conditions, such as the Dirichlet problem. In addition, they give suggestive new evidence of the strengths
and weaknesses of methods such as incomplete factorization preconditioners in the Dirichlet case.

Key words, linear systems, iterative methods, preconditioners, periodic and Dirichlet boundary con-
ditions, Fourier analysis, convergence rates, condition numbers
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1. Introduction. Iterative methods constitute an indispensable tool for solving
large sparse linear systems of equations, such as those arising from the discretization
of elliptic partial differential equations. Among the more common examples of such
techniques are stationary methods such as the Jacobi, Gauss-Seidel, and SOR methods
[34], [37], and preconditioned conjugate gradient or semi-iterative methods [7], [9],
[21 ], which use an approximate factorization of the coefficient matrix to improve the
conditioning of the problem. For the "model problem," the discrete Poisson equation

(1.1) -Au=f
posed on the unit square ft {0-< x, y-< 11 with Dirichlet boundary conditions and
discretized by finite differences, there are rigorous theoretical results giving bounds
on convergence rates for all these methods.

In particular, let

(1.2) Au=b

denote a linear system where A is symmetric positive definite, let Q be some
nonsingular splitting operator, and let the splitting be represented as

(1.3) A=Q-R.

We consider stationary methods of the form

u(m+ 1).._ Q-1RU<m) + Q-b,

and preconditioned conjugate gradient methods, where for symmetric positive definite
Q LL , the conjugate gradient method is used to solve the preconditioned system
[L-AL-][LTu] L-lb. Let em) u-um) denote the error for the ruth iterate
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FOURIER ANALYSIS OF ITERATIVE METHODS 21

TABLE
Asymptotic convergence rates for the Dirichlet

problem.

Method Convergence rate

Stationary Jacobi (r2/2)h2
Gauss-Seidel r2h
SOR (wb) 2rh
SSOR (wl) rh

PCG ILUCG x/’i’ffrh
MILUCG 2

SSORCG (w) 2G

computed by any such method. The number ofiterations needed to make the relative
error

(1.4) Ile(ll/llell
less than a specified tolerance is approximately inversely proportional to the asymp-
totic rate of convergence R. For stationary methods, R =-ln(), where
=(Q-R), the spectral radius of the iteration matrix, and for PCG,
R -In ((x/-r- 1)/(x/r + 1)), where r is the condition number ofL-AL-. Here the
norms for (1.4) are the Euclidean norm Ilvll2 (o) /2 for the stationary methods
and the A-norm Iloll (oAv)/2 for the preconditioned conjugate gradient methods.

Consider the case where (1.2) comes from the Dirichlet problem discretized by
second-order finite differences on a uniform n x n grid in f. Let h 1/(n + 1) and
N n :. The asymptotic convergence rates for a representative set of iterative methods,
as functions of h, are given in Table 1. For stationary methods, these results are
classical; their derivation and history can be found in Varga [34, p. 201], Young [37,
pp. 127, 464], and Axelsson [3, pp. 37-39]. The relaxation parameters wb and w are
the optimal and "good" choices for SOR and SSOR, respectively, as presented in [34],
[37]. The asymptotic analysis for SSORCG is the same as that of the SSOR semi-
iterative method, as discussed in [37, p. 472]. The use of the ILU factorization as a
preconditioner for CG is presented in Meijerink and van der Vorst [29], although no
condition number analysis is given there. Asymptotic results showing that ILU
preconditioned finite difference operators have condition number O(h-) (the same
as A) appear in Gustafsson [19]; the specific coefficient x/]-Tr given in the table is a
lower bound, derived in Chandra [7, p. 247]. Analysis showing that the MILU
preconditioned systems have O(h-) condition number (for general elliptic operators)
appears in Dupont, Kendall, and Rachford 11 ]; further analysis is given in the papers
by Axelsson [2], Dupont [10], and Gustafsson [19]. The coefficient 2x/- in the
convergence rate corresponds to a near-optimal choice of the MILU iteration
parameter, which follows from the analysis in [2]. For a summary of some of the
early developments of preconditioners, see Golub and O’Leary’s annotated
bibliography 17].

For both classes of methods, Ro is the limiting value as m of -(1/m) In m, where m is an
upper bound for (1.4). This notation is standard for stationary methods, where tim II(Q-R)mII [34], [37].
For PCG,/3,, 2[(x/’r- 1)/(x/’r + 1)] m, but using the limit is actually a slight abuse of notation since PCG
converges in a finite number of steps. In the context of Table 1, however, this number of steps is O(h-Z),
typically much larger than R7 for PCG, so that Ro is still a useful measure.
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22 T. F. CHAN AND H. C. ELMAN

One unsatisfying aspect of the derivations of these results is the degree to which
they depend on "hard analysis," i.e., the establishing ofcomplicated sets ofinequalities
leading to bounds on spectral radii or condition numbers. Moreover, the analyses for
individual methods tend to be specialized for those methods, so that it is somewhat
difficult to gain insight into one method from the analysis of another. For example,
although from an intuitive point ofview the SOR and SSOR iterative methods appear
to be closely related, the analyses of the two methods are different. Determination of
the optimal SOR iteration parameter comes from a specific relationship between the
eigenvalues of the SOR and Jacobi iteration matrices [34], [37], whereas (for the
natural ordering) there is no such result for SSOR. Similarly, the analyses of relaxation
methods say little about the incomplete factorizations, and conversely (cf., however,
the variable-w generalized SSOR technique, which is equivalent to the MILU facto-
rization [2]). Moreover, the performance of CG depends on both the extreme
eigenvalues and the distribution of eigenvalues [3]; in general, the analyses of precon-
ditioners provides virtually no information concerning the latter issue. Because of
this, subtleties of behavior of preconditioned CG are not understood.

A heuristic explanation for why these analyses must be difficult is that the
coefficient matrix A and splitting operator Q typically do not share a common set of
eigenvectors, which makes it difficult to analyze the spectrum of Q-A or of Q-R.
This phenomenon can be seen by considering the classical stationary methods. An
orthogonal set of eigenvectors for the discrete Dirichlet operator .4 on an n n grid
consists of the n vectors {vS"l <-_ s, t <= n}, whose ((k- 1)n + j)th component is

(1.5) "" sin
sTrj

sin tr..k
’ n+l n+l"

Thus the spectral decomposition ofA is a discrete finite Fourier sine series. As shown
by Frankel 15], the Gauss-Seidel and SOR iteration matrices have eigenvectors w’,
where

(s,t) ),(j+k)/2, (s,t)(1.6) vvjk --"st tljk

and ,., is the corresponding eigenvalue ofthe iteration matrix. Thus, the eigenvectors
can still be expressed in terms of trigonometric (sine) functions (so that they bear
some resemblance to a Fourier series), but they differ from the eigenvectors ofA by a
componentwise multiplicative factor. (The eigenvectors for the Jacobi method are the
same as those of A.) As for preconditioners, their analyses avoid the consideration of
eigenvectors entirely, and instead consist of case-by-case studies of the extreme
eigenvalues of Q-A for different Q. In this paper, we introduce a Fourier analysis for
iterative methods and preconditioners applied to discretized elliptic partial differential
equations. This analysis has the property that for model problems all the operators
under consideration share a common set of orthonormal eigenvectors. As a result,
the methodology can be used in a uniform manner to study convergence properties
of a broad collection of methods, and all eigenvalues can be determined essentially
by inspection.

Fourier methods are a standard tool for the analysis of both differential equations
and discrete solution methods for time-dependent problems. A classic example is the

This relationship between the eigenvectors of the Jacobi iteration matrix and those of Gauss-Seidel
and SOR is also shown in Young’s thesis [36] in much more general form. In particular, Young’s results
(which never appeared in print) are not limited to constant coefficient operators or simple boundary
conditions.
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FOURIER ANALYSIS OF ITERATIVE METHODS 23

von Neumann stability analysis. Consider, for example, the Cauchy problem for the
heat equation (see Richtmyer and Morton [30, p. 9]):

OU
(x,t)

OZu
0" =x(x’t)’ - <-x <- + u(x, 0) given.

Let {u} be defined by some finite difference scheme. For the discrete solution to be
of any use, it should be bounded (in time), since the continuous solution is damped
out as t increases. To reflect this requirement, the (strict) von Neumann stability
analysis procedure imposes the condition that each discrete Fourier component of
the solution of the form

(1.7) u= eimUzxx)(m)

satisfies the condition I(m)l --< 1. For example, if Euler’s method

(1.8) u+, At
(u+,--Zua+ )+

(AX)2 Uj-1 Uj

is used for the difference scheme, then substitution of (1.7) into (1.8) shows that (1.7)
is a solution when the amplification factor ((m) satisfies

At
(1.9) t(m)=(Ax)(e’m-2 +e-m)+ 1.

That is, ((m) 4(zXt/(zXx) 2) sin2 (mAx/2), and the yon Neumann requirement is
satisfied for all m provided At/(Zkx)<-_ 7. Von Neumann analysis has been applied
extensively and successfully as a general guideline in many applications (see, e.g.,
the comments by Roache [31, p. 50]). The Fourier approach has also been used
to construct discrete schemes for solving PDEs with spectral methods [18], which
compute solutions in the form of a finite linear combination of discrete Fourier
components of the form (1.7).

Fourier methodology is also a standard analytic tool for elliptic problems; see,
e.g., Weinberger [35, Chap. IV] for an elementary treatment. For example, the
eigenfunctions for the Laplace operator on the unit square with homogeneous
Dirichlet boundary conditions are

v(’) sin srx sin try, s, t 1,2, ...,
of which the vectors (1.5) are the discrete analogues. More generally, the Laplace
equation Au 0 on a rectangle with Dirichlet boundary conditions u =g has a
uniformly convergent Fourier series solution when g has a uniformly convergent
Fourier series on each side of the rectangle. In a recent analysis, Bube and Strikwerda
[5] use Fourier transforms of difference operators to derive regularity estimates of
their solutions which in turn can be used to analyze the convergence of the discrete
solution. Fourier analysis has also been used in the development ofnumerical methods
for elliptic problems. For finite difference methods, discrete Fourier series such as
(1.5) are exploited by one type of so-called "fast direct" elliptic equation solver, whose
efficiency derives from the Fast Fourier Transform (see, e.g., Swarztrauber [33]). These
techniques can also be used as preconditioners for iterative methods for solving
nonseparable problems, resulting in convergence rates that are asymptotically
bounded independent of mesh (see, e.g., Concus and Golub [8] and Elman and
Schultz 13]).
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24 T. F. CHAN AND H. C. ELMAN

There has been some use of Fourier methods for the analysis of numerical
methods for discrete elliptic problems. The most notable example is Brandt’s "local
mode analysis" for use with multigrid methods [4], where a heuristic analysis is used
to demonstrate that the Gauss-Seidel iteration reduces high frequency errors rapidly.
Kettler [24] uses a similar approach to study PCG as a multigrid smoother, and
Jameson [22] analyzes a modified Runge-Kutta marching scheme used as a smoother
in a multigrid algorithm for transonic flow problems. Other examples include an
analysis recently used for "local" (i.e., variable w) relaxation schemes by Kuo et al.
[25], [26]; an analysis of the stability of (complex) factorizations of the discrete
Laplacian by Liniger [28]; and an analysis of finite element methods by Strang and
Fix [38]. All of these techniques ignore the effects of boundary conditions, but the
behavior predicted by them agrees with numerical experiments.

In general, though, Fourier analysis has not been a popular tool for studying
numerical methods for elliptic problems. We suspect that it never caught on for use
in stationary methods because it is not rigorously applicable except for constant
coefficient operators with periodic boundary conditions. However, the classical analy-
sis does a thorough job of explaining the performance of numerical methods for
general problems. (See 5 for some exceptions to the restriction on boundary condi-
tions. See also [20] for a perturbation analysis relating the one-dimensional periodic
and Dirichlet problems, and ], [27] for generalizations ofthe classical SOR analysis.)
They have rarely been applied to preconditioners because, in addition to the restric-
tions on boundary conditions, the preconditioning matrices do not look like constant
coefficient (i.e., constant diagonal) operators even when the continuous problem has
constant coefficients. The only exception seems to be [24]. However, there only the
smoothing rate is needed, which is governed by the convergence rate of the middle
frequency of the error, arguably less sensitive to the effect of boundary conditions.
Our results show that the Fourier approach works even for predicting the behavior of
the low frequencies.

In the present work, we examine the model problem (1.1) with periodic boundary
conditions, and define a discrete approximation and splittings (1.3) by analogy with
operators for other boundary conditions. These matrices all share the same set of
orthogonal eigenvectors, and it is easy to examine spectral radii and condition
numbers. Although the analysis is exact only for periodic boundary conditions, there
is a strong correspondence with results for other boundary conditions. In particular,
the orders of magnitude of asymptotic convergence rates for the Dirichlet problem
are reproduced exactly by the periodic analysis. Moreover, the Fourier methodology
provides insights into subtleties ofthe behavior ofmethods, especially preconditioning
techniques, not available from existing analysis. Thus, our analysis can be used like
the von Neumann analysis as a practical tool to help determine whether or not a
method is effective.

In 2, we present the periodic model problem and outline the methodology that
will be used throughout the paper. In 3, we show how this methodology can be
applied to the Jacobi, Gauss-Seidel, SOR, and SSOR stationary iterative methods. In
4, we consider the ILU, MILU, SSOR, and alternating direction DKR approximate
factorization preconditioners [6]. In particular, we show that the standard results for
both stationary methods [37] and incomplete factorizations [6], [7], [11], [19] are
reproduced essentially verbatim by the Fourier analysis. Finally, in 5, we present a
heuristic analysis and experimental evidence demonstrating that the Fourier results
can provide information and insights into methods for the model problem with other
boundary conditions.
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FOURIER ANALYSIS OF ITERATIVE METHODS 25

2. Framework of analysis. Consider the Poisson equation (1.1) on the unit
square, with periodic boundary conditions

(2.1) u(x, O) u(x, 1), u(O, y) u(1, y).

The eigenfunctions of the Laplacian with these boundary conditions are

(2.2) u(x, y)= eixZsiyzt,

where s and are integers, and the corresponding eigenvalues are

(2.3) (2rs) + (2rt)2.

Discretizing this problem by centered finite differences on a uniform
(n + 1) (n + 1) grid gives rise to a system of linear equations

(2.4) Au=b

of order N (n + 1)-. It is convenient to represent vectors u of order N as a doubly
indexed array {u;}, 0 =< j, k =< n. Alternatively, u is a function defined on the mesh-
points {(jh, kh)10-<j, k -< n}, with u= u(jh, kh), where h 1/(n + 1). If the differ-
ence operators are scaled by h 2, then the equation of (2.4) corresponding to the (j, k)
gridpoint is

(2.5)

where b. h2f(jh, kh). Because of the periodic boundary conditions, the indexing of
(2.5) is performed in mod n + arithmetic so that un/ l,k Uok and Ujo uj, n/ 1. The
coefficient matrix A has.the form

P B B
P B

B
B P

where

4 -1 -1 -1

1 4 -1
P= B=

-1
-1 4

Consider the vector u’’’) defined by

(2.6)

-1

(s,t) e(i(j/(n+ 1))27rt)
lljk 1))27rS)e(i(k/(n+ eJsetk4t,

where

2rs 2’t
(2.7) 0,- oh, 0 < s, t < n.

n+ n+

This is an eigenvector of A analogous to the eigenfunction (2.2), and for integers
0 _-< s, _-< n, {u’’)} comprises a set of orthogonal eigenvectors for A that span CN.
After substitution of (2.6) into the recurrence on the left side of (2.5), a straightforward
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26 T. F. CHAN AND H. C. ELMAN

computation shows that

where

Abt(s,t) Ntl(s,t)

(2.8) (A ,., 4 2 cos 0 2 cos $, 4 sin 2

"+ sin

i.e., k.t is the eigenvalue corresponding to the eigenvector us’n. (To see more clearly
the relationship between the eigenvalues (2.3) and (2.8), note that the eigenvalues of
A/he are (4/h)(sin2 (0#2)+ sin2 (’/2)), which for small s and are approximately
equal to the continuous eigenvalues (2.3).) Note that eigenvalues for the eight indices

(s,t) (t,s), (s,n+ l-t), (n+ 1-t,s),

(n+ l-s,t), (n+ l-t,s), (n+ l-s,n+ l-t), (n+l-t,n+l-s)

are all equal, so that most eigenvalues ofA are of multiplicity 8.
We will define splittings of form (1.3) for the periodic problem (2.4) by analogy

to versions for the Dirichlet problem. All the splitting operators Q can be described
in terms of computational molecules on the underlying grid. For example, for the
Gauss-Seidel and SOR iterative methods, Q is given by a matrix L in which the row
corresponding to the (j, k) gridpoint has nonzero entries in the columns corresponding
to the (j, k), (j-1, k) and (j, k-1) points. Similarly, for the ILU and MILU
incomplete factorizations, Q has the form LU in which L has the nonzero structure
just described and the row of U for the (j, k) gridpoint contains nonzeros in the
columns corresponding to (j, k), (j + 1, k), and (j, k + 1). The computational mole-
cules for L, U, and A are shown in Fig. 1.

FIG. 1. Computational moleculesfor (from left to right) L, U, andA.

As with A, indexing is performed in mod n + arithmetic. As a result, L (i.e.,
each version of L) is not a lower triangular matrix, but instead is a block matrix of
(block) order n + 1, with nonzero structure

Xy Y
X

(2.9) ...
Y X

X and Y are of order n + 1, X has nonzero structure

(2.10)

X X
X X

X X
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FOURIER ANALYSIS OF ITERATIVE METHODS 27

and Y is a diagonal matrix. (Here "" denotes a nonzero entry.) That is, L is block
lower triangular except for a nonzero diagonal block in the upper fight corner, and
the diagonal blocks of L are lower triangular except for a nonzero in the upper fight
corner. U has the same nonzero structure as L. In the following, we use the word
"method" loosely in conjunction with these splittings, although in reality the splittings
are designed only as analytic tools, and not as the basis for numerical methods for
solving (1.1) and (2.1). Indeed, since L and U are not triangular, applying the actions
of their inverses is more complicated than for other boundary conditions.

We remark that there is a close relationship between the spectrum of the discrete
periodic problem (2.4) and that of discretized problems with other boundary condi-
tions, such as Dirichlet and mixed Dirichlet-Neumann conditions. Consider the
Dirichlet case, in which the boundary conditions (2.1) are replaced by

(2.11) u(x,y)=g(x,y), (x,y)Oft.

Discretizing on a uniform grid with n interior points in each direction results in a
linear system of order n 2 whose eigenvalues are 11

(2.12) (sin 2

_
sin 2

where

,- <s, t <
n+ n+

The corresponding eigenvectors are fiJ") sin (jO) sin (k,). Most of the eigenvalues
are of multiplicity 2, and comparison with (2.8) shows that roughly one-fourth of the
eigenvalues of the Dirichlet problem are also eigenvalues of the periodic problem.
Equivalently, on a given mesh of width h, the Dirichlet problem admits eigenvalues
with roughly twice as many Fourier modes in each component as does the periodic
problem. The smallest modes for the Dirichlet and periodic problems are rh and 2rh,
respectively (see [19]). These observations will be used as the basis of a heuristic
analysis connecting results for the periodic problem to problems with Dirichlet
boundary conditions (see 5).

Finally, observe that for the continuous periodic problem (1.1)/(2.1), the eigenpair
(1.1) in the case s 0 is , 0, u 1. Hence, the problem (1.1)/(2.1) is not well
posed: if v is a solution, then v + c is also a solution for any constant c. Similarly, the
discrete eigenpair (2.8) for s 0 is ), 0, u-- 1, so that A is singular. (All other
eigenvalues are nonzero, so that A has rank N- 1.) In addition, in some cases the
splitting matrix Q is also singular (see 4). Consequently, it is not meaningful to talk
about Q-, Q-R, or the condition number of Q-A. In the Fourier analysis below,
we will restrict our attention to the nonzero modes in each component of.4 and Q,
i.e., to the cases =< s, =< n. These modes are analogues of the lowest modes for the
Dirichlet problem. Thus, the smallest nonzero eigenvalue of A that we will consider
is kmi 8 sin 2 (rh) = 8712h 2, and the largest eigenvalue (for 0.,. , = r) is kmax " 8.
We will define analogues of spectral radii and condition numbers in terms of these

Other boundary conditions give rise to similar properties. For example, if (2.11) is replaced by the
pure Neumann condition ux 0 on the vertical boundaries x 0, x 1, and first-order differencing is used
for u-, then the eigenvalues are as in (2.12) except s 0 and s n + are also included, and the eigenvectors
are cos (jO) sin (k4,). See [35] for further discussion along these lines.
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28 T. F. CHAN AND H. C. ELMAN

restricted sets of eigenvalues and eigenvectors. Note that the extreme periodic eigen-
values (and therefore the conditioning with respect to the restricted eigenvalue set)
for a mesh of width h/2 are the same as those ofthe Dirichlet problem for mesh width
h. Below, we will use this correspondence to apply our results to iterative methods for
the Dirichlet problem.

3. Stationary iterative methods. In this section, we define the splittings for the
periodic problem that correspond to the Jacobi, Gauss-Seidel, SOR, and SSOR
stationary methods for (2.4) and we perform a Fourier convergence analysis of each
of them. Let {.},.,=o denote the eigenvalues of the splitting operator Q and let
{u,,,t.,,=0 denote the eigenvalues of R. As we will show below, each of the splitting
operators is nonsingular and Q, R, and A all share the same set of orthonormal
eigenvectors. Hence, the eigenvalues of Q-R are {P,/,.,} ,=o, and the spectral radius
of Q-IR (with respect to the restricted set of modes) is

(3.1) o max
<-s,t<-_n

We must determine the value of (3.1) for each of the splittings.
Let

(3.2) A=D-(L+LV),
where D diag (A) and D L has the nonzero structure (2.9)-(2.10). Then the Jacobi
splitting is given by Q D, R L + L v. Applying these operators to the eigenvector
u’’) of (2.6) gives

Du..,,=4u,,, Lu,,=(e-O,.+e-,,)uS,), Lu,O=(eO+e,,)uS,"
Hence, the eigenvalues of the Jacobi iteration matrix are

e;" + e-’+ e*’ + e-;*’ cos (0) + cos (4)
(3.3) ret= 4 2

The largest values occur when s t 1, so that the spectral radius is

oj= cos (2r/(n + )) cos (2rh).

Note that the eigenvalues of D, L, and L can be identified by simply examining
the computational molecules and the corresponding (constant) matrix entries for each
of these operators. For example, at any (j, k) meshpoint, L uses the neighboring
(j- 1, k) and (j, k- 1) points, with corresponding matrix values equal to 1, so the
resulting eigenvalue is (1 x)(e-; + e-). This technique of determining eigenvalues
by inspection applies to all of the operators of this paper (including A). It is analogous
to determining the amplification factors (or symbols) for the Von Neumann stability
analysis from the difference schemecompare the coefficients and the subscripts,
respectively, of (1.8) with the coefficients and exponent signs of (1.9).

For the Gauss-Seidel splitting, Q D L and R Lr. Consequently, the eigen-
values of the Gauss-Seidel iteration matrix are

iOs + i4,t
"r,

4 (e-+ e-i,)

A straightforward algebraic manipulation gives

+ cos (Os- 4)
8- 4(cos (0) + cos ()) + +cos (0- 4,)"
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FOURIER ANALYSIS OF ITERATIVE METHODS 29

The maximum value occurs at s 1, which results in a spectral radius of

s /1 + 8 sin (rh)"
The SOR splitting is defined by

Q
I
D L, R =(1 .__.) D + L

where o > 0 is the relaxation parameter. Therefore, the eigenvalues of the SOR
iteration matrix are

Then

(3.4)

4( o) + w(ei+ e’,)
4_w(e_iOs+e_i,,)

a.,12 (1- o) + (o2/8)(1 +cos (0.-,))-o(1- o)(sin z (Os/2)+sin 2 (,/2))
(1- w) + (w2/8)(1 + cos (0.- ,)) + w(sin (0if2) + sin2 ($,/2))

Note that (3.4) has the form

(r,.,i 2
g(0,., ,1 + w(w 1)f(O.,4),)

g(O., 4), + wf(O., 4,

wheref > 0 and both the numerator and denominator are positive. If 0 < o < 2, then
Iw(1- o)l < w, which implies that wf > Iw(w- 1)If Therefore, the SOR spectral
radius OSOR is less than 1. This is essentially Kahan’s result [23], and we now restrict
our attention to w in this range. It is easy to verify that the spectral radius occurs at
s t 1. Therefore,

PSOR(W)2 (W-- 2)2- 8w(1 w) sin2 (rh)
(o- 2) 2 + 8o sin2 (rh)

Differentiating this expression with respect to w, we find that the value of w that
minimizes OSOR (O) is

Substituting w* into OSOR (0) gives

+ 2 sin (rh)

PSOR (*)= /(( sin’ (rh))
+ sin (rh))"

Finally, for the SSOR stationary splitting,

Q=(D-wL)D-(D-wLT),
o(2- o)

R=((w- 1)D-wL)D-((w 1)D- wLV).
(2-)

Therefore, the SSOR eigenvalues are

(3.5) (4(1-w)+w(ei."+ ei,)]{4(l -w)+w(e-i.,+ e-i,)]
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30 T. F. CHAN AND H. C. ELMAN

The two factors on the fight-hand side of (3.5) are complex conjugates of one another,
and the first factor is exactly ,., of (3.4). Therefore I,.,I- I,.,I 2, and the same
arguments as for SOR give the following:

(1) If 0 < w < 2, then PSSOR (W) < 1.
(2) The optimal value of o for SSOR is o* 2/(1 + 2 sin 0rh)).
(3) The minimum spectral radius for SSOR is 0SSOR (W*)= (1- sin 0rh))/(1 +

sin (rh)).
We collect the results from the Fourier analysis of stationary methods in Table

2. We also include the known results for the Dirichlet problem. Our observations at
the end of 2 show a correspondence between the spectrum of the discrete periodic
problem with meshsize hi2 and that of the discrete Dirichlet problem with meshsize
h. Thus, in Table 2 we show the Fourier results for a meshsize hi2. Comparison of
the Fourier and classical results reveals an extraordinary agreement. The Fourier and
classical results for the Jacobi and SSOR methods agree exactly, as do the asymptotic
convergence rates for the Gauss-Seidel method. For the SOR splitting, the values of
w* agree asymptotically, and so do the exponents of h in the asymptotic rate of
convergence. The only disagreement is a factor of 4 in the coefficients of h in the
asymptotic convergence rates.

TABLE 2
Comparison ofFourier results and classical resultsfor stationary methods.

Fourier Classical

Method w* p(w*) R(o*) o* p(o*) R(o*)

Jacobi cos 0rh) r .2
h2

cos Orh) h2
2 2

Gauss-Seidel rh cos 0rh) 7rh
41 + 8 sin 0rh/2)

SOR 2 //1 -sin (rh/2)
r 2 -sin 0rh) 2rh

+ 2sin 0rh/2) +sin 0rh/2)
h

+sin (rh) +sin (rh)

SSOR 2 -sin (rh/2) 7rh 2 -sin (rh/2) 7rh
+ 2sin (Trh/2) +sin (rh/2) + 2sin 0rh/2) +sin (rh/2)

4. Preconditioners. In this section, we define the ILU, MILU, SSOR, and
ADDKR incomplete factorizations for (2.4) and perform a spectral analysis of the
preconditioned systems. The standard analysis of preconditioners examines the con-
dition number of the preconditioned operator Q-/2AQ-/2, i.e., the ratio of the
maximum and minimum eigenvalues of Q-A. The condition number can be derived
from upper and lower bounds on the Rayleigh quotient

(4.1)
(v,Q-,/2AQ-,/zv)

(V, V)

(see [7], 11 ], 19]). The eigenvectors ofA with unit norm are

os,t) h21,ts,t),
where u’’’) is given by (2.6). Let V denote the orthonormal matrix whose columns
are v ’’’, and let A denote the diagonal matrix containing the corresponding eigenval-
ues (2.8). Again, as we show below, the eigenvectors ofA are also eigenvectors of each
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FOURIER ANALYSIS OF ITERATIVE METHODS 31

preconditioner Q that we are studying. If9 denotes the diagonal matrix of eigenvalues
of Q, then

(4.2) A VA V*, Q= vv*.

For nonsingular Q, it is easily verified from (4.2) that the extreme values of (4.1) are
given by the minimum and maximum values of, X,.,/ff+.,. We refer to the quantities
u,., as the "preconditioned eigenvalues," and we define the "restricted" condition
number) for the preconditioned problem to be the ratio max/min, where mx and
min are the extreme eigenvalues for the set of restricted modes

/max max X.,/ff,, btmin"" min
<=s,t<=n <=s,t<=n

These expressions and re) are well defined for both singular and nonsingular Q.

4.1. The ILU factorization. The ILU factorization is defined to be the product
Q LU, where L has the nonzero structure (2.9)-(2.10) and U has the structure of
L such that the entries of Q have the same values as those of A wherever A is
nonzero. For this and all other incomplete factorizations, we use the convention that
U has unit diagonal. By formally multiplying the factors and matching the entries of
Q and A, we find that the defining condition is imposed by choosing the nonzero off-
diagonal entries of L to be equal to the corresponding entries of A, and the nonzero
entries of U to be equal to the corresponding entries ofA premultiplied by the .inverse
of the diagonal of L. For the discrete Laplacian, the off-diagonals of L are identically
-1, and those of U in the (j, k) row are -1/cgx. The diagonal entries must then satisfy
(in mod n + 1) arithmetic

cj.k=4 1/cj-l,k- 1/cj,_l, O<=j, k<=n.

These equations are satisfied by aj.- c 2 + 4. Hence, the ILU factors are constant
coefficient matrices. They are also strictly diagonally dominant, so that (in contrast
to A), L, U, and Q are nonsingular.

The preconditioning matrix Q is equal to A + R, where

Z is a matrix of all zeros,

(4.3)

Z Ev E
E Z E

R’--

E "r E Z

and 1/a 1/(2 + /). For any eigenvector u u(’’’) ofA given by (2.6),

[Ru]/,=
2 + /(u_,,/<+ + u+ ,,_ )-2 + /eueik*(e-) + e-i-)

2

2 + /
cos (0 )uj.<.
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32 T. F. CHAN AND H. C. ELMAN

As a result,

where

Qu(s’t) d/st u (s’t),

(4.4) G,=4 sin2 -+ sin2 +
2 + /

cos (G- q,).

Thus, A, R, and Q all share the same set of orthonormal eigenvectors. (As observed
in 3, these eigenvalues could also be determined by directly applying L and U as
difference operators to ut’’), or by simply ascertaining the symbols of L and U in
terms of their effect on the computational molecule. This approach shows that L and
U also have the same eigenvectors.)

The condition number r) for the ILU preconditioning is the ratio of the
maximum and minimum nonzero values of

kst(I)(4.5) t
4(sin2 (G/2) + sin (4,/2))

4(sin2 (0d2) + sin (@,/2)) + (2/(2 + x/)) cos (G’
where 0. and are as in (2.7) with s, => 1. The following result gives an asymptotic
bound for r tI.

THEOREU 4.1. For the ILU preconditioned operator, r1)= O(h-2).
We defer the proof to the Appendix. This result coincides with the analogous

asymptotic bound for the condition number of the ILU preconditioned Dirichlet
operator [7], [19].

In addition to providing condition numbers, (4.5) gives a clear picture of the
distribution ofeigenvalues and the effect ofthe ILU preconditioner. The denominators
G, of (4.5), i.e., the eigenvalues of the ILU preconditioning matrix Q, are all O(1).
Hence, the extreme ILU preconditioned eigenvalues correspond precisely to the
extreme modes of the original matrix. These are the smallest, occurring wherever
sin (0,/2) and sin (,/2) is small, i.e., at the four corners of the box {0 < 0., < 2r}.
Away from these corners, all the eigenvalues of Q and A are of order 1, so the
preconditioned operator is well behaved. A surface plot of (4.5) (for n 30) that
confirms this is shown in Fig. 2.

4.2. The MILU factorization. The MILU factorization is defined so that the
entries of Q have the same values as those ofA for all off-diagonal indices at which A
is nonzero, and the sum of the entries of each row of the error matrix R- Q- A
equals ch, where c is a nonnegative constant that is independent of h. These conditions
are imposed by choosing the off-diagonal entries of L and U to be the same as in the
ILU factorization, and the diagonal values ofL to satisfy

(4.6) a. =4 + ch2- 2,_,..- 2,_.

This expression is satisfied by

ch 2

2)2(4.7) a=- o 2 +--+- 48ch2 + (ch

If c 0, then a 2. The MILU factors also have constant coefficients, they are
diagonally dominant and hence nonsingular for c > 0, and for c 0 they have a zero
eigenvalue with eigenvector equal to the constant vector.
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FOURIER ANALYSIS OF ITERATIVE METHODS 33

FIG. 2. Surface plot of ILU preconditioned eigenvalues, n 30.

The error matrix has the form

ET E
D Ev

Er E D

where D diag (-2/a + ch2), E has the form (4.3), rt l/a, and c is defined by (4.7).
The eigenvalues of Q corresponding to the eigenvectors u(’) are

Os ) 2 2
if,,=4 sin2-+sin2 +- cos (O,- 4,)--+ ch2.

If c 0, then a 2. In this case, for s 0, koo 0, and Q is singular. The restricted
condition number r0 for the MILU preconditioning is the ratio of maximum and
minimum values of

(4.8) u(t) X*--Z’ 4(sin 2 (0s/2)+ sin2 (t/2))
4(sin 2 (Os/2) + sin - (/2))+ (2/a)(cos (Os- 49t) 1)+ ch2’

for <=s,t<=n.
The following result gives a bound for M>.
THEOREM 4.2. For the MILUpreconditioned operator, ifc > 0 then r (t) O(h-),

and ifc 0 then (4) O(h-2).
See the Appendix for a proof. The analysis ofthe MILU preconditioned Dirichlet

operator gives the same result for c > 0. We know of no theoretical result in the
Dirichlet case for c 0, although we have observed empirically that the condition
number behaves as does O(h-) there also. We will comment on this difference
between the periodic and (observed) Dirichlet results in 5.
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34 T. F. CHAN AND H. C. ELMAN

FIG. 3. Surface plot of MILU preconditioned eigenvalues, n 50, c 80.

As in the case of the ILU preconditioner, the MILU formula (4.8) shows clearly
the eigenvalue distributions and the effect ofthe MILU preconditioner. A surface plot
of (4.8) for n 50 and c= 80 is shown in Fig. 3. Moreover, examination of this
expression shows subtleties of behavior for the periodic problem not revealed by
analyses of the Dirichlet problem. Let z denote the box {(0, )[0 _-< 0, -< 2r} in two-
dimensional (0, O)-space, and let 5= {(0, 4)[4 2r-0}, the transverse diagonal
across . (In Fig. 3, is the square depicted in the horizontal plane and is the
dotted line. See also Fig. A1 in the Appendix.) Then the following observations hold;
see the Appendix for elucidation.

(1) The smallest eigenvalues of the MILU preconditioned operator are of order
1, and the asymptotically extreme eigenvalues are the large ones, of order h- for
c > 0 and of order h -2 for c 0. Examples of extreme large eigenvalues occur near
the endpoints of 9; for c > 0, they occur when 0 2 (i.e., s x/n + 1/r), and for
c 0, when 0 O(h).

(2) Indeed, the only extreme eigenvalues occur near the endpoints of 5. That
is, if is any domain containing the corners of 5, then for all 0 and outside of, the eigenvalues corresponding to Os and t are of asymptotic order one as h 0.

(3) The effect on conditioning ofthe ch term used in the definition ofthe MILU
factorization can be clearly seen. When c > 0 the condition number is O(h-) and
when c 0 it is O(h-). The latter result differs from empirical observations for the
Dirichlet problem (see 5), although it involves a delicate cancellation.

4.3. The SSOR factorization. Let A D (L + Lv) as in (3.2). Then the SSOR
factorization is given by

Q= (D- ooL)D-(D-L),
where o e [0, 2] is a scalar. It is easily verified that the SSOR eigenvalues are

(4.9) ,= 4-w+ +4o sin-g+sin +--cos (0- b/).
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FOURIER ANALYSIS OF ITERATIVE METHODS 35

In principle we would like to choose o to minimize the condition number s)(o).
Unfortunately, this turns out to involve rather complicated calculations. Instead we
proceed in two stages. First, we determine the optimal value of o that minimizes
s)(o) on the line S only. This one-dimensional problem is much more tractable,
and we have Lemma 4.1.

LEMMA 4.1. Let u., )./. denote the SSOR preconditioned eigenvalues. Then

max(0,,) last
min O(h-),

with the optimal value ofw given by w* 2/(1 + 2 sin (rh)).
See the Appendix for a proof. For this choice of w, we then have the following

bound on the SSOR condition number.
THEOREM 4.3. For the SSOR preconditioned operator, /f w w* then s)=

O(h-).
Proof The proof of this result is essentially the same as the proof of

Theorem 4.2 for the MILU preconditioning (see the Appendix): for w o*, it can be
shown that the SSOR-preconditioned eigenvalues us) satisfy

< (s)_< (1 + 2s) 2

-=u 16s+ S-s-z=O(h-1),
where s sin (rh/2) O(h). We omit the details. [2]

This asymptotic bound on the condition number again coincides with the results
for the Dirichlet problem. It also shows that for any w, the SSOR preconditioned
operator has condition number at least O(h-), since any other value gives a con-
dition number at least that large on 5. In empirical observations of the SSOR-
preconditioned periodic eigenvalues s) )./s,, we also find that the maximum and
minimum values occur on 5, suggesting that w* is indeed the true optimal value.
Finally, w* coincides with the near-optimal value 2/(1 + 2 sin (rh/2)) for the Dirichlet
problem [37], scaled to account for a factor of 2 difference in modes analogous to the
difference between the Dirichlet and periodic Fourier modes.

4.4. The ADDKR faetorization. The previous results show that the Fourier
analysis not only confirms the classical results for Dirichlet problems, but also reveals
more details about the iterative methods, such as the eigenvalue distribution. But
perhaps the most powerful application of the Fourier approach is to use these new
insights to design better methods. We will show such an example in this section.

The ADDKR incomplete factorization [6] combines a standard incomplete
factorization with an incomplete factorization for a permuted version ofA in which
the order ofthe gridpoints in one direction (without loss of generality, the x-direction)
is reversed. For motivation, consider the stationary method

u-u+-Q-(b-Au),

where Q L U is some incomplete factorization, and r is a scalar parameter. By
convention, the unknowns of (2.4) are ordered in the natural order with horizontal
lines ordered from left to fight. Since the factorization has a preferred direction on
the grid, this sweep does not annihilate errors uniformly on the grid. This phenomenon
can be seen from Fig. 3, where the eigenvalue u is large (O(h-)) near (0, ) (0, ,,)
and small (O(1)) near (0, )= (0, ). It therefore seems natural to combine this
method with one that complements this behavior, i.e., has large eigenvalues near
(0, and small ones near (0, ,). It turns out this can be achieved by changing the
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36 T. F. CHAN AND H. C. ELMAN

direction ofthe ordering ofthe gridpoints in defining the preconditioner. Let P denote
the permutation that reorders the horizontal lines from fight to left, and let
denote the incomplete factorization for PAPr; equivalently, Q=L:U:=
[p:p][prf:p] is another approximate factorization for .4. Then a second sweep

u--u+rQ’(b-Au)

will tend to annihilate errors left over from the first one.
L and U are defined exactly as in the MILU factorization, except for the

diagonal entries, where h2 is replaced by hp for some p e [0, 2]. Hence, the diagonal
values are given by

chp
(4.10) a= 2 +---+- /8chP +(chP) 2.

L2 and U2 are defined in an identical manner, except that their computational
molecules are as in Fig. 4. That is, L2 has the form (2.9) but in which X has the form
of the transpose of (2.10). Let R1 Q1- A and R2-" Q2- A. As shown in [6], the
splitting operator

Q=Q,(A+R,+R2)-’Q2

corresponds to performing a sweep based on Q followed by a sweep based on Q2.
The ADDKR preconditioning uses Q as the preconditioner for (2.4). We are interested
in the ratio of maximum and minimum eigenvalues of Q-A, although in this case,
Q is not symmetric and this ratio is not the condition number.

FIc. 4. Computational moleculesfor (from left to right) A, L2,
and U2.

Exactly as for the preconditioners discussed above, the eigenvalues ofQ are

t) 4(sin (0/2)+sin2 (4,/2))+(2/a)(cos (0.-4))- 1)+chp,

and those of Q2 are

) 4(sinz (O./2)+sin (4/2))+(2/a)(cos (0+ 4))- 1)+chp,st

where a is as in (4.10). Note that the only difference between these two expressions is
in the sign of ,. The eigenvalues ofA + R + R2 are., 4(sin 2 (0./2) + sin (,/2)) + (2/a)(cos (0- q) + cos (0. + 4,) 2) + 2chp.

Hence, the ADDKR preconditioned eigenvalues are

A)_ 4(sin (0./2) + sin (/2))s
(4.1 1) #"’ PI )’t’(2)v,,
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FOURIER ANALYSIS OF ITERATIVE METHODS 37

Using techniques analogous to those for the MILU preconditioning, we can show
that the maximum eigenvalue of (4.11) is bounded above by 2 O(1), for any p.
Although we have not been able to derive a rigorous lower bound for u, we have been
able to get a good idea of its value by examining (4.11) empirically. Let u(0, ) be

(A It is straightforward to show that is symmetric with respect toused to denote ut
reflection over each of the lines 0 -, r, O , 0 2r , i.e.,

u(0, 4,) u(2r-0, 4) u(4, 0)= u(2r- 4,, 2r 0).

Therefore, we can restrict our attention to the triangular region of the first quadrant
of bounded by 0 and 0 r (see Fig. A 1). We have observed empirically that
the minimum value occurs on the horizontal line l 2rh, and that on this line,
(0, 2rh) takes on its minimum value (as a function of 0) at one of the endpoints
0 2rh, 0 = r. It is easily shown that asymptotically, (2rh, 2rh) (8r/c)h-, and

4z(r, 2rh)= 2x/h/ The asymptotically optimal value of p =- can then be deter-
mined by equating the two exponents of h. We therefore have the following conjecture.

4Conjecture. For the value p g, the ratio of maximum and minimum eigenval-
ues of the ADDKR preconditioned periodic operator has the asymptotic value
O(h-a/3), and this is the smallest asymptotic value for all p in the interval [0, 2].

This optimal choice of p agrees with the empirically determined optimal value
for the Dirichlet problem [6]. A surface plot of (4.11) is given in Fig. 5.

2r

2r

0

FIG. 5. Surface plot ofADDKR preconditioned eigenvalues, p =-,
n 50, c 1.

5. Relation to other boundary conditions. All the results presented so far apply
only to the periodic problem. However, as we have observed throughout our presen-
tation, these results are very similar to analogous results for the Dirichlet problem. In
this section, we present an analysis and further numerical evidence relating the
periodic analysis to the Dirichlet problem.

The results of the previous sections concern difference operators Mp defined for
the periodic problem. That is, if A,, Q,, and R, denote the coefficient matrix and
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38 T. F. CHAN AND H. C. ELMAN

splitting operators for the periodic problem, then Mp Q-Rp for stationary methods
andM Q-Ap for preconditioning methods, and all the operators of both classes of
methods share the eigenvectors {u(’’} of (2.6). Let ,"" denote the eigenvalues of Mp
corresponding to uc’’’, and depending on context, let Kp represent either Ap or Rp.
(Here we are ignoring the possible singularity of Qp. To avoid reference to Q;, we
could also say that {(X;"", uC"’))} are the solutions to the generalized eigenvalue
problem Kpu Qpu.)

Consider the vectors

V(s,/) (U(s,n+ l--t) .. u(n+ --s,/)) (U(s,t) _. u(n+ 1--s,n+ --t)),
W(S,t)

___
(u(s,n+ 1-1) .. u(n+ -s,/)) .. (u(s,,) _1_ u(n+ 1-s,n+

which satisfy
(s,t)v}’’)= 4 sin (jO,) sin (k4,), j 4 cos (jO.) cos (k,).

From the periodicity of (all) the preconditioned operators, we have
X<+ -"’+ -’ and thereforep

x;""+ x, ,,, .x;’ "P W( t).
2

v +
2

Equivalently,

(5.)

where

Now assume that n is odd, n 2 rn + for some positive integer m. Consider a
partitioning of the unit square into four equal quadrants (ordered counterclockwise
starting from the lower left) and an ordering of any grid function u as

where u;, -< _-< 4, corresponds to the gridpoints interior to the ith quadrant and u5
corresponds to the gridpoints on the interface separating the quadrants. Let v *’’) and
wc’’’) be partitioned in this manner.

Consider the Dirichlet problem with homogeneous boundary conditions on the
first quadrant, i.e., the square f [0, 1/2] x [0, 1/2]. The coefficient matrix Ad is the
discrete Laplacian defined on an rn x rn grid. We define Md Q-SKd to be the
Dirichlet operator analogous to Mp on the square ft, i.e., Qd and Kd are the restrictions
of the periodic operators to the interior of f, Qd Qpl ,, and Kd Kp] ,. Except for
the ADDKR factorization (which is complicated by the term (A + R + R2)-l; see
{}4.4), the resulting matrices have coefficients precisely equal to those of their periodic
analogues at the corresponding stencil points.4 The vectors {v c’’)} vanish on the

Thus, for the ILU and MILU factorizations, the matrices Qd have constant values on each of their
bands, so that these are actually slightly different preconditioners than the standard ones for the Dirichlet
problem. It has been observed empirically that the standard factors, and hence their product, are very close
to constant coefficient operators (see 13]). Also, note that this operator is slightly different near the
boundary from Od (Lp)d(Up)d, which is an alternative Dirichlet preconditioning operator.
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FOURIER ANALYSIS OF ITERATIVE METHODS 39

boundary of f, so that with the exception of ADDKR all the splittings satisfy

(Kpo (s’t)) Kdo(i’’t) and (Qpo(S’t))l QdV]s’’),(5.2a)

Hence by (5.1),

If

(5.2b)

then X’’ 0 and Kav] p dU 1’ Relation (5.2b) holds for the eigenvalues of
the Jacobi iteration matrix (see (3.3)), which leads to the following result.
Tnzo 5 If xc,, XC,’,m+- and (5.2a) holds, then "’ is an eigenvalue of

M. In paaicular, for the Jacobi method, the eigenvalues "" of Mp, s, m,
are precisely the m2 eigenvalues of the coesponding Difichlet matrix Ma for the
quadrant . This result confis the well-known analysis of the Jacobi method for
the Difichlet problem (see, e.g., [37]). The analysis also helps to clarify the coespond-
ence between periodic problems with mesh size h/2 and Difichlet problems with
mesh size h. Note that (5.2b) also holds for the ADDKR preconditioned matrix (see
(4.11)). However, because of its more complicated form, the ADD factor Qp does
not satisfy the second equality of (5.2a).

For the other methods under consideration, ,,o # ,+-) and (Qp w(S,t))l is not
necessarily small on fl, so that" will not be a good approximation to an eigenvalue
of Md. However, the strong co,elation between the results for the periodic problem
and the classical results for the Difichlet problem suggests that the periodic analysis
gives a good indication of the performance of the coesponding method for the
Difichlet problem. We now ve two examples of numerical evidence supposing this
conjecture.

First, we show that the Fourier analysis predicts the distribution ofthe eigenvalues
for the ILU preconditioned Difichlet operator. Figure 6 plots the Difichlet eigenvalues
for h (computed in double precision using EISPACK [16]) and the periodic
eigenvalues for h . For Fig. 6, both sets of eigenvalues have been soaed in
increasing order, and the horizontal axis represents the index of the Difichlet eigen-

225values or the index of the periodic eigenvalues scaled by. As the figure shows, the
two distributions are almost identical.

1.6

iodic

irichlet

0.1
100 2;0 3;0

FIG. 6. Distribution of ILU preconditioned eigenval-
uesfor Dirichlet (h ) and periodic (h +/-)32 operators.
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40 T. F. CHAN AND H. C. ELMAN

Second, we show that the Fourier analysis predicts the dependence of the MILU-
condition number on the parameter c. It can be shown from (AS) by elementary
calculus that for the periodic problem, the maximum eigenvalue of the MILU
preconditioned matrix is

(5.3) /-tmax
V2c//

occurring when (l 2r 0 and sin (0/2) = x/h. Similarly, it can be shown that
the minimum eigenvalue is

(5.4) /’tmin

" C/(871"2)
occurring for 0. O dt 4 2r/(n + 1). Hence, as a function of c, the restricted
condition number is

(5.5) (c)= + c/(87r 2)

Using elementary calculus, it is straightforward to show that K
(t) has a minimum

value of 1/(2rh) at c = 8r2.
We wish to apply these observations to the MILU-preconditioned discrete

Dirichlet problem on the unit square. First, note that the recurrence (4.6) for the
diagonal values {a} is not satisfied exactly for the MILU factorization ofthe Dirichlet
operator. For indices j or n and k or n, the entries a_, or a;+ 1,k and a;,_
or a,k+ do not appear. As noted above and shown in 13], Otjk is close to the constant
value a of (4.7) for most j, k. Thus, we could consider the alternative incomplete
factorization for the Dirichlet operator in which the constant a is used in place of the
varying {aj. }. We denote this constant coefficient incomplete factorization by MILU*.
We will compare the results (5.3)-(5.5) with the corresponding values for the precon-
ditioned Dirichlet operator, using both the trueMILU preconditioning and the MILU*
preconditioning.

Let the Dirichlet problem be defined on a mesh of width hd, SO that for the
Dirichlet MILU preconditioner Q, the row sum of Q- A is Cdhd We seek a corre-
spondence between this problem and the periodic problem for meshsize hi, hall2.
For the correspondence between the MILU-preconditioned periodic problem and the
(constant coefficient) MILU*-preconditioned Dirichlet problem, we adopt the con-
vention that both factorizations use the same value of a. That is, we use Ca and hd in
place of c and h in (4.7) for the Dirichlet problem, and Cp and hp for the periodic
problem, and then we equate the two values of a obtained. The result is Cp 4 Ca. We
will also compare the performance of the true Dirichlet MILU preconditioner to the
periodic version with these pairs of values Cd and G.

In Fig. 7, we plot the minimum eigenvalues for the Dirichlet and periodic
problems for ha , and in Fig. 8, we plot the maximum eigenvalues for both
hd= 6 and hd= . (The minimum values for hd are nearly identical to those
plotted in Fig. 7.) In Fig. 9, we plot the condition numbers for the three preconditioned
operators, for both values of hr. (Again, the data for the periodic problem comes from
using hp hall2 and cp 4Cd in the MILU symbol (4.8).) The eigenvalues for the
Dirichlet problems were computed as the eigenvalues of the preconditioned matrix
B AQ- using Arnoldi’s method with Chebyshev acceleration [32]. The stopping
criterion for the eigenvalue iteration was IIBo XvlI2 -< .5 10 -3, where 110112 1. The
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FOURIER ANALYSIS OF ITERATIVE METHODS 41

2.0

1.5

1.0

0.5

0.0

(C) Periodic
x Dirichlet-MILU*
[] Dirichlet-MILU

2’0 4; 6b 8’0
c

hd

FIG. 7. Minimum eigenvalues of the MILU preconditioned
operators, ha -6.

40.0

30.0

0 Periodic
x Dirichlet-MILU*
[] Dirichlet-MILU

FI6. 8. Maximum eigenvalues ofthe MILU preconditioned
operators, hd and hd .

Dirichlet eigenvalues were computed on a VAX-8600 in double-precision Fortran;
the periodic eigenvalues (4.8) were computed in single precision.

Figures 7-9 show the results for the three preconditioned operators to be quali-
tatively very similar. In particular, we can say the following:

(1) The maximum MILU-eigenvalues are nearly indistinguishable from the
periodic eigenvalues, and the true Dirichlet MILU-eigenvalues tend to the other sets
as ca grows. The minimum eigenvalues (which do not vary asymptotically with hd)
for the three problems are qualitatively similar and tend toward one another with
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42 T. F. CHAN AND H. C. ELMAN

40.0

0 Periodic
Dirichlet-MILU*

[] Dirichlet-MILU
30.0

.,
20.0

h,= 6
10.0

0.0 ! 2b 4’0 6]3 8)
c

FIG. 9. Condition numbers of the MILU preconditioned
operators, hd -6 and hd .

increasing Cd, although (somewhat surprisingly) the true MILU-eigenvalues are closer
to the periodic ones than the MILU*-values.

(2) The minimum periodic eigenvalues are smaller than both sets of Dirichlet
values, and the maximum periodic eigenvalues are larger than the Dirichlet ones, so
that the periodic condition number is an upper bound for the Dirichlet condition
numbers.

(3) The optimal value Cp , 8r2 determined above gives an optimal ca 2r2 for
the Dirichlet problem, which is the same value derived from bounds on the condition
number by the analyses of [2], [19]. The actual minimum values for the Dirichlet
curves of Fig. 9 are slightly smaller, but the dependence of conditioning on c clearly
follows the same general pattern for the two types of boundary conditions.

We end with one further observation from these results that reveals the usefulness
of the Fourier analysis. The folklore for the MILU-preconditioned Dirichlet problem
holds that the condition number for Cd 0 is also O(hl), although this has never
been proved. The computed condition numbers when Cd 0 for the three methods
considered here are shown in Table 3. Thus, the values for the MILU-preconditioned

TABLE 3

Dirichlet Dirichlet
hd PeriodicMILU MILU*

1/26 7.5 39.8 27.4
1/52 15.7 84.8 110.0

We elaborate on this point as follows. First, in both [2] and 19], the preconditioning parameter is
scaled by diag (A), i.e., for the model problem, 4ch is added to the diagonal instead of ch 2. The optimal
value for the scaled modification in [2] is therefore 7r2/2. Moreover, in scrutinizing these results, we
discovered that the optimal choice of-/8 reported by Gustafsson 19] is actually in error; the correct value
for the analysis of 19] is also r2/2.
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FOURIER ANALYSIS OF ITERATIVE METHODS 43

Dirichlet operator agree with the folklore,6 and the MILU*-conditioning also appears
to grow in the way hsl does. Our analysis of the periodic problem gives the condition
number for Cp 0 as O(h-:), but this result is strongly dependent on certain exact
cancellations (see the Appendix). We suspect that these cancellations do not occur in
the Dirichlet case, and that the better performance is a consequence of this.

Appendix. In this section, we fill in the technical details omitted from the main
text: we prove Theorems 4.1. and 4.2, provide evidence for the observations made at
the end of 4.2, and prove Lemma 4.1.

Proofof Theorem 4.1. We bound #(I) of (4.5) by deriving explicit bounds for ,
of (2.8) and st of (4.4). It holds immediately that

2
(A1) Xst-< 8, p+., -< 8 +

2+ /"

For the inequalities in the other direction, first note that since =< s, =< n,

7r <_Os< rtTr

n+l-2-n+l

so that

Os 7V
sin => sin sin (Trh).

n+l

Hence

X,,_-> 8 sin 2 (rh)=O(h2).
Combining this with the second inequality of (A1) gives
below, we use the identity

(A2)
cs (0-) (1 2 sin )(1-2 sin)

i) => O(h2). To bound

+ 4 sin sin sin - sin

Substituting x sin (0,/2), y sin (,/2) gives

(A3) cos (0.- 4,) 2(x2 + y2) + 4xZy + 4xy/(1 x-)(1 ye).

It then follows from (4.4) that

2
ff"

2 + /
(2(1 + /)(x2 +y2)+ +4xZy2 + 4xy /(1 -x2)(1 _y2))

2 2
/2cz (2(x- +y2)+ -41xl lYl)=

2 + -(2(Ixl- lYl) 2 + 1)
2 +

2
2+,’

where we have used the fact that xy((1 -x2)(1 -y2))/2 >__-Ixl lYl. Combining this
with the first inequality of (A1) gives i)< 4(2 + /) O(1), whence i <_ O(h-Z).

To the best of our knowledge, no experiments demonstrating this have been reported previously.
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44 T. F. CHAN AND H. C. ELMAN

To see that this bound is tight, consider the case of Os c&. Then (4.5)
simplifies to

If Os 0 2rh, then

8 sin (G/2)
8 sin (Os/2)+ 2/(2 + x/)

/,t
(I)

8rZh2 + 2/(2 + x/) O(h2);

and if G = r(s = (n + 1)/2), then

8
u = O(1). t

8 + 2/(2 + x/)

Proof of Theorem 4.2. Letting x sin (G/2), y= sin (4t/2) and using (A3), we
rewrite (4.8) in terms ofx and y as

(A4) t
4(x2 + y2)

(4 4/a)(x + y2) + (8/a)(xZy + xy4(1 x)(1 y)) + ch2"

Note that both x and y are nonzero and bounded in absolute value by one, and
min Ixl min lyl sin (rh) _-< ?h for all small h, where = r is .independent of h.

For the lower bound on u, taking absolute values and applying the triangle
equality to the representation ofG in the denominator of (A4) gives

0 G,= I@s,I (4 + 4/a)(x2 + y2) + (8/a)(x2y + Ixl lyl) + ch

<= 10(x2 + y2) + ch 2,
xZy2 <where we have used the facts that 1/a _-< 2, Ixl lYl, and Ixl lY[ < (xe + Y2)/2.

Hence,

2(M) , .
5 + chR/10(xa + y2) + c/(20(h)2) O(1),

For the upper bound on (, from the representation of Gt in the denominator
of (A4), we have

(A5) G -> (4 4/ot)(X2 q- y2)_ (8/c0 Ixl lyl( Ixl lyl) + ch.
By assumption, x and y are both nonzero, so that

(A6) z(M)_--<
(1 l/a)- 2c(Ixl lYI(1 Ixl lYl)/x + Yz)+ (ch2/x2 d- y2).

But

0 =< -Ixl lYl -2h.

Substituting this inequality into (A6) and using the fact that Ixllyl/(x + yZ)<-
7 gives

/A(M)
1/0)- 1/)( 2h2) + ch2 2/a + O(h2)"

Since we are concerned only with the asymptotic behavior as h-- 0, it is suificient
to consider the high-order parts of 2/a. In particular, x/8ch+ (ch)= 2hx/
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FOURIER ANALYSIS OF ITERATIVE METHODS 45

for small h, so that a 2 + hx/ + O(h2) and 2/c 2/(2 + hx/ + O(h2))
hx//2 + O(h2). Consequently,

#v <-
hx//2 + O(h2)"

Thus, for c>0, v-< O(h-) and r{t<_ O(h-); but for c=0 the O(h) term
disappears from the denominator so that <v <_- O(h-2) and r4 __< O(h-2).

These asymptotic bounds on #t are also achieved. For example, if 0s , = r,
then v 8/(8 + ch2) O(1) for any c, so that the lower bound is reached. For the
upper bound, consider the case of , 2r Os, so that

(A7) cos (0s- ,) cos (20s) 8 sin 2 (Os/2)+ 8 sin4 (Os/2).

Substitution into (4.8) gives

(A8) #=
8 sin2 (Os/2)

4h4- sin 2 (Os/2)+ 8 sin4 (Os/2)-4h,v sin4 (0/2) + ch2"

If c=0, then this expression simplifies to sinZ(O/2)/sin4(Os/2), and the par-
ticular choice of 0--2rh leads to #4)= O(h-). If c > 0, then 0s 2rh results in
u4) O(1), but 0s = 2/ (i.e., s = /n + 1/r) gives ut O(h-). Hence.when c 0,
tM O(h-2), and when c > 0,

We now provide justification for the remarks made at the end of 4.2
concerning the MILU preconditioning. Extreme eigenvalues on the transverse diag-
onal S were exhibited in the proof of Theorem 4.2. To see that the only extreme
eigenvalues are near the corners of S, note that in (A2) the square root is actually
+cos (Os/2) cos (,/2), where the positive square root applies in the region + {0 <-_ 0,

_-< r} tO {r <- 0, _-< 2r], and the negative square root applies in the complement_ - sO+. These regions are depicted in Fig. A 1. Similarly, the sign of the square
root in (A4) depends on the location in of the modes determining x and y. It
follows immediately from (A4) that ut)_< 2 on +. Moreover, (A5) implies that

ffs>__ 2(Ixl- lyl) 2 +8-x2yZ.
Away from the endpoints of 5 in _, Ixl and lYl are both bounded below by a
constant independent of h. Hence, #t O(1) away from these corners.

271"

0 7r 27r

FIG. A1. Division of_= {(0, 4)10 -<- 0, 4 --< 2r}.
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46 T. F. CHAN AND H. C. ELMAN

The effect on the preconditioned operator of the ch 2 term used in the definition
of the MILU factorization is clearly evident from (A8). When c 0, the coefficient of
the sin z (0./2) term in the denominator is zero, and the result is a preconditioned
eigenvalue of order h- when 0 is O(h). In contrast, for nonzero c, the value 0 O(h)
produces an eigenvalue of order one. This result for c 0 differs from empirical
results for the Dirichlet problem, but closer examination of (4.8) and (A4) reveals
this phenomenon to be a very delicate matter. If (0, ,) is in , then x=
sin (0.,/2) sin (/2) y. Let y ax be determined by a pair of values of 0s and ()l
near 5 in the corners of. The numerator of (4.8) is at least O(h), so it is possible
to have an eigenvalue of O(h-) only if the denominator is not larger than O(h4).
Note that the negative square root is used everywhere near the ends of 5. Where
c 0 (so that a 2), the denominator of (A4) is

(A9) 2(1 + aZ)x2 + 4ax4- 4ax2/(1 xZ)(1 aZx:).

However,

x/( xZ)( a2x2) xZ)x/1 + a2)/( x2)x2 x2 + (1 a2)x-
Consequently, (A9) is approximately

2(a- 1)2x2 + O(x4),

which is at least O(h2) unless a 1. Thus, any perturbation away from pushes the
preconditioned eigenvalues from the extreme O(h-2) values to O(1). Thus, although
the restricted condition number for the MILU preconditioned system with c 0 is
O(h-2), the extreme eigenvalues appear in a very constrained set on . In contrast,
there are many examples of (small) extreme eigenvalues for the ILU preconditioned
operator. A similar argument also shows that all the extreme eigenvalues for c > 0 (of
order h-t) occur on .

Finally, the optimal w and SSOR condition number on are determined as
follows.

ProofofLemma 4.1. With x sin (Os/2), y sin (4,/2), (4.9) can be rewritten as

$. (4 w + w2) + (4w wZ)(x2 + y2) + 2w2(x:y2 +xy/( x:)( y2)).

Relation (A7) implies that on the line 5, the SSOR eigenvalues are

(2-w)2 + 4w(2 w)x2 +4wZx,
and the eigenvalues of the SSOR preconditioned operator on 5 are

(A10) v=u(x,w)=
8

(2 w)2/x2 + 4w(2 w) + 4wZx2’

where sin (rh) -_< x2 -< 1. We can use (A10) to derive the value of w that minimizes
the condition number on . First, it can be shown by elementary calculus that
for any w, the maximum value of u is Uma (W)= 1/(W(2- W)), occurring when
x2 =(2-o)/w. Moreover, for fixed w, v is a convex function of x2, where
sin2 (rh) <-_ s2 _-< 1. Hence, its minimum must occur at one of the endpoints sin2 (rh)
or one. Thus, the condition number on is the larger of

K1 (09)
]max (00) jLtmax (09)
,,()

_()=
()
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FOURIER ANALYSIS OF ITERATIVE METHODS 47

where

8
(2 w)2 + 4o(2 o) + 4w2’

8
u2()

(2- w)Z/sin2 (rh) + 4o(2- w) + 4w 2 sin: (rh)

are the values of # at the endpoints. As functions of w, and K2 are both
convex functions that tend to as w approaches both zero and 2. Moreover,
by setting 2, it can be verified that they intersect at just one point, given
by w*=2/(1 +2sin(rh)). Hence, on S, (o) and 2(w) have the form
given in Fig. A2 and the minimum value of max {(w),(w)} occurs at w*.

40

3O

10

-0.5
-i a

0.0 0.5 1.0 1.5 2.0
Omega

FG. A2. Convex functions () and <:(o) determining SSOR
condition number on S.

Moreover, #max (o*) (1 + 2 sin (rh))2/(8 sin (rh)) O(h-) and #min (09")
(1 + 2 sin (7rh))2/(2(1 + sin (rh))2) O(1), so that the condition number
is O(h-). I--1
Acknowledgment. The authors thank Gene Golub for directing us to references 15]

and [36].
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